Page 7 of 8
Pl eNa es we dJ oo u nr no at l ao df jCu hs et mm i as tr rgy ins
Journal Name
ARTICLE
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
porphyrins: Synergistic effect of weak bronsted acids. J. Am.
Chem. Soc., 1996, 118, 1769-1776.
9 Z. Chen, P. Kang, M. T. Zhang and T. J. Meyer, Making syngas
electrocatalytically using a polypyridyl ruthenium catalyst.
Chem. Commun., 2014, 50, 335-337.
0 P. Kang, C. Cheng, Z. Chen, C. K. Schauer, T. J. Meyer and M.
Brookhart, Selective electrocatalytic reduction of CO2 to
Anxolabehere-Mallart, K. C. Lau, T. C. Lau and M. Robert,
DOI: 10.1039/D0NJ02900A
1
2
Molecular catalysis of the electrochemical and
photochemical reduction of CO with earth-abundant metal
2
complexes. Selective production of CO vs HCOOH by
switching of the metal center. J. Am. Chem. Soc., 2015, 137,
10918-10921.
formate by water-stable iridium dihydride pincer complexes. 36 S. Sung, D. Kumar, M. Gil-Sepulcre and M. Nippe, J. Am.
J. Am. Chem. Soc., 2012, 134, 5500-5503.
Chem. Soc., 2017, 139, 13993-13996.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
2
2
1 J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. 37 M. Abdinejad, A. Seifitokaldani, C. Dao, E. H. Sargent, X. A.
Froehlich and C. P. Kubiak, Manganese as a substitute for
Zhang and H. B. Kraatz, Enhanced electrochemical reduction
of CO2 catalyzed by cobalt and iron amino porphyrin
complexes. ACS Appl. Energy Mater., 2019, 2, 1330-1335.
rhenium in CO reduction catalysts: the importance of acids.
2
Inorg. Chem., 2013, 52, 2484-2491.
2 I. Bhugun, D. Lexa and J. M. Savéant, Ultra efficient selective 38 M. Abdinejad, C. Dao, B. Deng, F. Dinic, O. Voznyy, X. Zhang
homogeneous catalysis of the electrochemical reduction of
carbon dioxide by an iron(0) porphyrin associated with a
and H. B. Kraatz, Electrocatalytic reduction of CO to CH and
2 4
CO in aqueous solution using pyridine-porphyrins
weak bronsted acid cocatalyst. J. Am. Chem. Soc., 1994, 116
015-5016.
,
immobilized onto carbon nanotubes. ACS Sustain. Chem.
5
Eng., 2020, 8, 9549-9557.
2
3 A. A. Al-Omari, Z. H. Yamani and H. L. Nguyen, 39 M. Abdinejad, C. Dao, B. Deng, M. E. Sweeney, F. Dielmann,
Electrocatalytic CO₂ reduction: from homogeneous catalysts
to heterogeneous-based reticular chemistry. Molecules,
X. Zhang and H. B. Kraatz, Enhanced electrochemical
reduction of CO to CO upon immobilization onto carbon
2
2
018, 23, 2835.
nanotubes using an iron-porphyrin dimer. ChemistrySelect,
24 C. Costentin, S. Drouet, M. Robert and J. M. Savéant, A local
2020, 5, 979-984.
proton source enhances CO2 electroreduction to CO by a 40 X. M. Hu, M. H. Rønne, S. U. Pedersen, T. Skrydstrup and K.
molecular Fe catalyst. Science, 2012, 338, 90-94.
5 C. Costentin, G. Passard, M. Robert and J. M. Savéant,
Pendant acid-base groups in molecular catalysts: H-bond
Daasbjerg, Enhanced catalytic activity of cobalt porphyrin in
CO2 electroreduction upon immobilization on carbon
materials. Angew. Chem. Int. Ed., 2017, 56, 6468-6472.
2
promoters or proton relays? Mechanisms of the conversion 41 J. W. Wang, H. H. Huang, J. K. Sun, T. Ouyang, D. C. Zhong
of CO to CO by electrogenerated iron(0) porphyrins bearing
and T. B. Lu, Electrocatalytic and photocatalytic reduction of
CO2 to CO by cobalt(II) tripodal complexes: Low
overpotentials, high Efficiency and selectivity. ChemSusChem,
2018, 11, 1025-1031.
2
prepositioned phenol functionalities. J. Am. Chem. Soc., 2014,
1
36, 11821-11829.
2
2
6 C. Costentin, G. Passard, M. Robert and J. M. Savéant, Ultra
efficient homogeneous catalyst for the CO -to-CO 42 R. C. Cammarota, M. V. Vollmer, J. Xie, J. Y. Ye, J. C. Linehan,
electrochemical conversion. Proc. Natl. Acad. Sci., 2014, 111
14990-14994.
2
,
S. A. Burgess, A. M. Appel, L. Gagliardi and C. C. Lu, A
bimetallic
nickel-gallium
complex
catalyzes10 CO2
7 F. Franco, C. Cometto, F. F. Vallana, F. Sordello, E. Priola, C.
Minero, C. Nervi and R. Gobetto, A local proton source in a
hydrogenation via the intermediacy of an anionic d nickel
hydride. J. Am. Chem. Soc., 2017, 139, 14244-14250.
[
Mn(bpy-R)(CO) Br]-type redox catalyst enables CO2
3
reduction even in the absence of Brønsted acids. Chem.
Commun., 2014, 50, 14670-14673.
28 G. G. Oliveros, E. A. Páez-Mozo, F. M. Ortega, C. Ferronato
and J. M. Chovelon, Degradation of atrazine using
metalloporphyrins supported on TiO2 under visible light
irradiation. Appl. Catal. B: Environ., 2009, 89, 448-454.
2
9 S. Afzal, W. A. Daoud and S. J. Langford, Photostable self-
cleaning cotton by a copper(II) porphyrin/TiO visible-light
2
photocatalytic system. ACS Appl. Mater. Inter., 2013, 5, 4753-
4
759.
3
3
3
0 T. Karpuschkin, M. M. Kappes and O. Hampe, Binding of O2
and CO to metal porphyrin anions in the gas phase. Angew.
Chem. Int. Ed., 2013, 52, 10374-10377.
1 J. P. Collman, J. I. Brauman and K. M. Doxsee, Carbon
monoxide binding to iron porphyrins. Proc. Nati. Acad. Sci.,
1
979, 76, 6035-6039.
2 E. M. Nichols, J. S. Derrick, S. K. Nistanaki, P. T. Smith and C. J.
Chang, Positional effects of second-sphere amide pendants
on electrochemical CO2 reduction catalyzed by iron
porphyrins. Chem. Sci., 2018, 9, 2952-2960.
33 I. Azcarate, C. Costentin, M. Robert and J. M. Savéant,
Through-space charge interaction substituent effects in
molecular catalysis leading to the design of the most efficient
catalyst of CO -to-CO electrochemical conversion. J. Am.
2
Chem. Soc., 2016, 138, 16639-16644.
4 N. Elgrishi, M. B. Chambers, V. Artero and M. Fontecave,
Terpyridine complexes of first row transition metals and
electrochemical reduction of CO to CO. Phys. Chem. Chem.
Phys., 2014, 16, 13635-13644.
3
2
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins