1216 J. Phys. Chem. A, Vol. 104, No. 6, 2000
Zhang and Bauer
with an eigenvalue < 1.0 × 10-5. In any event, if the magnitude
of the eigenvector of a reaction is less than 0.1, it is considered
unimportant. The mechanism listed in Table 1 was first analyzed
assuming that all the species in the mechanism were “observed”,
i.e., requiring that the reduced reaction mechanism from the
analysis faithfully reproduces concentration profiles of all the
inserted species. It was found that 16 steps (6, 14, 15, 16, 18,
24, 25, 32, 39, 43, 44, 47, 50, 51, 55, and 67) were unimportant
during the entire decomposition process. The remaining mech-
anism was then further analyzed by considering only those
species for which the concentrations reach at least 10-4 of
[i-C3H7NO2]o during part of the decomposition. These are
i-C3H7NO2, NO2, CH3CHdCH2, C2H4, CH4, H2, C3H8, NO,
H2O, (CH3)2CO, HONO, CH3CHO, i-C4H8, C3H5NO,
CH2CCH2, CO, CH3CN, CH3NO2, n-C4H8, and C6H12. It was
found that seven more steps could also be omitted without
altering the time evolution of the listed species: 11, 33, 34, 35,
59, 60, 78. The differences between the concentrations computed
via the reduced and the full mechanism are less than 5%. A
simplified mechanism tree is graphically presented in Figure
12. Note that the following atoms and free radicals are the most
reactive species in this system: i-C3H7, H, CH3, OH, and HNO.
HONO elimination accounts for less than 20% of the total loss
of i-C3H7NO2 over the temperature range covered in this
investigation.
(15) Smith, T. E.; Calvert, J. G. J. Phys. Chem. 1959, 63, 1305.
(16) Waddington, C. J.; Ann Warriss, M. J. Phys. Chem. 1971, 75, 2427.
(17) Wilde, K. Ind. Eng. Chem. 1961, 57, 1750.
(18) Spokes, G. N.; Benson, S. W. J. Am. Chem. Soc. 1967, 89, 6030.
(19) Palo, J.; Faracova, M.; Kubat, P. J. Chem. Soc., Faraday Trans. 1
1984, 80, 1499.
(20) Gla¨nzer, K.; Troe, J. Recent DeVelopments in Shock Tube Research,
Proceedings of the 9th International Symposium, 1973; p 743-748.
(21) Radhakrishnan, G.; Parr, T.; Witting, C. Chem. Phys. Lett. 1984,
111, 35.
(22) Mialocq, J. C.; Stephenson, J. C. Chem. Phys. 1986, 106, 281.
(23) Spears, K. G.; Brugge, S. P. Chem. Phys. Lett. 1973, 54, 373.
(24) Mallard, W. G. NIST Chemical Kinetics Database, Version 6.0,
1994.
(25) Zhang, Y.-X.; Bauer, S. H. J. Phys. Chem. B 1997, 101, 8717.
(26) Dean, A. M. J. Phys. Chem. 1985, 89, 4600.
(27) Tsang, W. J. Phys. Chem. Ref. Data 1988, 17, 887.
(28) Munk, J.; Pagsberg, P.; Ratajczak, E.; Sillesen, A. Chem. Phys.
Lett. 1986, 132, 417.
(29) Ballod, A. P.; Titarchuk, T. A. Kinet. Catal. 1977, 18, 1359.
(30) Batt, L.; Milne, R. T. Int. J. Chem. Kinet. 1974, 6, 945.
(31) Batt, L.; Milne, R. T. Int. J. Chem. Kinet. 1977, 9, 141.
(32) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr,
J. A.; Troe, J. J. Phys. Chem. Ref. Data 1992, 21, 1125-1568.
(33) Batt, L.; Islam, T. S. A.; Scott, H. Int. J. Chem. Kinet. 1978, 10,
1195.
(34) Tsang, W.; Herron, J. T. J. Phys. Chem. Ref. Data 1991, 20, 609-
663.
(35) Heicklen, J. AdV. Photochem. 1988, 14, 177.
(36) Tsang, W. J. Phys. Chem. Ref. Data 1991, 20, 221-274.
(37) Laidler, K. J.; Sagert, N. H.; Wojciechowski, B. W. Proc. R. Soc.
London 1962, 270, 254-266.
(38) Batt, L.; Milne, R. T.; McCulloch, R. D. Int. J. Chem. Kinet. 1977,
9, 567.
(39) Kerr, J. A.; Parsonage, M. J. EValuated kinetic data on gas-phase
addition reactions: reactions of atoms and radicals with alkenes, alkynes
and aromatic compounds; Butterworths: London, 1972.
(40) Tsang, W. Ind. Eng. Chem. 1992, 31, 3-8.
(41) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just,
Th.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J. J.
Phys. Chem. Ref. Data 1992, 21, 411-429.
(42) Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15,
1087.
(43) Slagle, I. R.; Gutman, D.; Davies, J. W.; Pilling, M. J. J. Phys.
Chem. 1988, 92, 2455.
(44) Naroznik, M.; Niedzielski, J. J. Photochem. 1986, 32, 281.
(45) Warnatz, J. Combustion Chemistry; Gardiner, W. C., Jr., Ed.;
Springer-Verlag: New York, 1984.
(46) Fifer, R. A. Ber. Bunsen-Ges. Phys. Chem. 1975, 10, 613.
(47) Gla¨nzer, K.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1974, 78, 182.
(48) MacKenzie, A. L.; Pacey, P. D.; Wimalasena, J. H. Can. J. Chem.
1984, 62, 1325.
Acknowledgment. The authors gratefully acknowledge the
financial support for this investigation from Army Research
Office under Grant No. DAAH04-95-1-0130.
References and Notes
(1) Olah, G. A.; Spuire, D. R. Chemistry of Energetic Materials;
Academic Press: San Diego, 1991.
(2) Borman, S. Chem. Eng. News 1994, Jan 17, 18-22.
(3) Adams, G. F.; Shaw, F. W., Jr. Annu. ReV. Phys. Chem. 1993, 43,
311.
(4) Bulusu, S. N., Ed. Chemistry and Physics of Energetic Materials;
Kluwer Academic Publisher: The Netherlands, 1990.
(5) Zhao, X. S.; Hintsa, E.; Lee, Y. T. J. Chem. Phys. 1988, 88, 801.
(6) Zhang, Y.-X.; Bauer, S. H. Int. J. Chem. Kinet. 1999, 31, 655-
673.
(7) Gardiner, W. C., Jr.; Walker, B. F.; Wakefield, C. B. In Shock
WaVes in Chemistry; Lifshitz, A., Ed.; Marcel Dekker Inc: New York, 1981.
(8) Huffman, R. Z.; Davidson, D. J. Am. Chem. Soc. 1959, 81, 2311.
(9) Zhang, Y.-X.; Bauer, S. H. J. Phys. Chem. A 1998, 102, 5846.
(10) Gla¨nzer, K.; Troe, J. HelV. Chim. Acta 1973, 56, 1691.
(11) Nazin, C. M.; Manelis, G. B.; Dubovitskii, F. I. Russ. Chem ReV.
1968, 37, 603.
(49) Miyauchi, T.; Mori, Y.; Imamura, A. Symp. (Int.) Combust., (Proc.)
1977, 16, 1073.
(50) Gla¨nzer, K.; Troe, J. HelV. Chim. Acta 1972, 55, 2884.
(51) Tulloch, J. M.; Macpherson, M. T.; Morgan, C. A.; Pilling, M. J.
J. Phys. Chem. 1982, 86, 3812.
(52) Ungnade, H. E.; Kissinger, L. W. Tetrahedron 1963, 19 suppl. 1,
p 121.
(53) Wilde, K. Ind. Eng. Chem. 1956, 48, 769.
(12) Nazin, G. M.; Manelis, G. B. Russ. Chem ReV. 1994, 63, 314.
(13) Wodtke, A. M.; Hintsa, E. J.; Lee, Y. T. J. Phys. Chem. 1986, 90,
3549.
(14) Frejacquens, C. Compt. Rend. 1950, 231, 1061.
(54) Hsu, D. S. Y.; Lin, M. C. J. Eng. Mater. Technol. 1985, 3, 95.