Please do not adjust margins
RSC Advances
Page 3 of 4
DOI: 10.1039/C6RA06628C
Journal Name
COMMUNICATION
embedded components diffuse and may thereby arrange two with co-embedded amphiphiles prepared from tartaric
optimal for the catalysis. In gel phase DSPC added amphiphiles acid or histidine. This resembles an ee of approx. up to 40%,
form patches with restricted lateral movement decreasing the which may be expected for reactions performed from race-
possibility for cooperative effects.19-21 This was also previously mate. The fluidity of the membrane is essential to achieve the
observed by us.18 Other membrane additives than tartrate or catalytic enantiodiscrimination and therefore only observed in
histidine do not show considerable effects on the relative DOPC vesicles. Although the measured rate differences may
hydrolysis rate of the enantiomeric esters. Substrates PN-C2- not be useful for practical applications, the results prove that
Phe and Pn-Phe exhibit similar enantioselective enhancement the intermolecular interaction between a Lewis acidic metal
(Table 2).
complex, chiral amphiphiles and activated amino acid esters
co-embedded into a fluid membrane without covalent con-
nection can affect reaction rates enantioselective.
kL [10-3s-1]
kD [10-3s-1]
PN-C2-Phe
PN- Phe
35
2059
17
1204
Table 2: Pseudo first order rate constants of hydrolysis for both enantiomers by a
Notes and references
vesicular solution of Zn2Cy (5 mol. %), L-Tar (10 mol. %) and DOPC (85 mol. %).
1. S. Mason, Trends Pharmacol. Sci.,
2. D. G. Blackmond, Cold Spring Harbor Perspectives in Biology,
2010, , a002147.
7, 20-23.
In order to confirm our observation, we prepared the
2
enantiomeric amphiphilic histidine D-His-COOH
.
This
3. W. Bonner, Origins Life Evol. Biosphere, 1991, 21, 59-111.
4. P. J. Walsh and M. C. Kozlowski, Fundamentals of
Asymmetric Catalysis, Macmillan Education, 2008.
compound was investigated under identical conditions as L-
His-COOH and induced a similar hydrolysis rate enhancement
of D-PN-C12-Phe (Fig. 5), but with opposite enantioselectivity.
5. S. K. Tulashie, H. Lorenz, L. Hilfert, F. T. Edelmann and A.
0.006
0.004
0.002
Seidel-Morgenstern, Cryst. Growth Des., 2008,
6. S. K. Tulashie, H. Lorenz and A. Seidel-Morgenstern, Cryst.
Growth Des., 2009, , 2387-2392.
8, 3408-3414.
9
7. L. Ma, C. Abney and W. Lin, Chem. Soc. Rev., 2009, 38, 1248-
1256.
L-His-COOH
0
0
0.2
0.4
0.6
0.8
1
8. C. García-Simón, R. Gramage-Doria, S. Raoufmoghaddam, T.
Parella, M. Costas, X. Ribas and J. N. H. Reek, J. Am. Chem.
Soc., 2015, 137, 2680-2687.
-0.002
-0.004
-0.006
D-His-COOH
9. J. You, X. Yu, X. Li, Q. Yan and R. Xie, Tetrahedron:
Time / minute
Asymmetry, 1998, 9, 1197-1203.
10. J.-S. You, X.-Q. Yu, X.-Y. Su, T. Wang, Q.-X. Xiang, M. Yang and
R.-G. Xie, J. Mol. Catal. A: Chem., 2003, 202, 17-22.
11. R. A. Moss and W. L. Sunshine, J. Org. Chem., 1974, 39, 1083-
1089.
Figure 5: Recorded difference in kinetics of L and D PN-C12-Phe substrate hydrolysis by
vesicular solution (85 % DOPC) with L or D His-COOH (10 %) and ZnCy2 (5%)
In addition, the effect of the membrane additive loading on
the enantioselectivity of the hydrolysis was investigated for D-
His-COOH (Fig. 6). Addition of 10 mol % provided the highest
relative difference between the hydrolysis rate constants.
12. F. Mancin, P. Scrimin, P. Tecilla and U. Tonellato, Coord.
Chem. Rev., 2009, 253, 2150-2165.
13. C. J. Brown, R. G. Bergman and K. N. Raymond, J. Am. Chem.
Soc., 2009, 131, 17530-17531.
400
L-PN-C12-Phe
D-PN-C12-Phe
14. C. J. Brown, F. D. Toste, R. G. Bergman and K. N. Raymond,
Chem. Rev., 2015, 115, 3012-3035.
300
15. C. Zhao, F. D. Toste, K. N. Raymond and R. G. Bergman, J. Am.
Chem. Soc., 2014, 136, 14409-14412.
200
100
0
16. F. Mancin, P. Scrimin and P. Tecilla, Chem. Commun., 2012,
48, 5545-5559.
17. B. Gruber and B. König, Chem. Eur. J., 2013, 19, 438-448.
18. M. Poznik and B. Konig, Org. Biomol. Chem., 2014, 12, 3175-
3180.
1%
5%
10%
15%
Figure 6: Pseudo first order rate constants of hydrolysis for both enantiomers by a
vesicular solution of Zn2Cy (5 mol. %) and DOPC with different loadings of D-His-COOH.
19. E. J. Shimshick and H. M. McConnell, Biochemistry, 1973, 12
,
2351-2360.
20. H.-J. Müller and H.-J. Galla, European Biophysics Journal, 14
,
Conclusions
485-491.
The relative catalytic hydrolysis rates of enantiomeric amino
acid esters with a non-chiral catalyst become significantly
different, if the catalyst is co-embedded into the surface of
DOPC vesicles with chiral amphiphiles. The rates for enantio-
meric phenylalanine nitrophenyl esters differ by a factor of
21. F. A. Heberle and G. W. Feigenson, Cold Spring Harbor
Perspectives in Biology, 2011, 3, a004630.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins