Paper
The extension of light absorption edge into visible region
and increased life time of charge carriers are the two major
factors responsible for the observed increase in PCRC activity
RSC Advances
2 S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS
Nano, 2010, 4, 1259; Z. Jiang, T. Xiao, V. L. Kuznetsov and
P. P. Edwards, Philos. Trans. R. Soc., A, 2010, 368, 3343;
J. C. S. Wu, Catal. Surv. Asia, 2009, 13, 30; M. A. Scibioh
and B. Viswanathan, Proc. Indian Natl. Sci. Acad., Part A,
2004, 70, 407.
3 M. Halmann, Nature, 1978, 275, 115; B. A. Blajeni,
M. Halmann and J. Manassen, Sol. Energy, 1980, 25, 165;
M. Halmann, M. Ulman and B. A. Blajeni, Sol. Energy,
1983, 31, 429; V. Jeyalakshmi, R. Mahalakshmy,
K. R. Krishnamurthy and B. Viswanathan, Indian J. Chem.,
Sect. A: Inorg., Bio-inorg., Phys., Theor. Anal. Chem., 2012,
51, 1263; K. Li, D. Martin and J. Tang, Chin. J. Catal., 2011,
32, 879.
(Table 2). Besides, decrease in the crystallite size observed for
doped samples, is the other contributing factor, since smaller
size could shorten the path length for the diffusion of charge
carriers from the bulk to the surface and hence reduce the
37
probability for recombination. Additionally, the layered
structure of Sr Ti facilitates easy transport of charge carriers
and separation of oxidation/reduction reaction centres within
3
2 7
O
12
the interlayer space. The formulation, with co-doping of N, S
and Fe together, wherein the inuence of these factors is
maximum, displays maximum activity (Table 2). Apparent
quantum yield for CO
with N and S, under identical experimental conditions, is less,
at 0.003% compared to 0.006% for N and S doped Sr Ti
could be a better alternative
2
conversion on titania P-25, when doped
4 T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature,
1979, 277, 637.
5 V. P. Indrakanti, J. D. Kubicki and H. H. Schobert, Energy
Environ. Sci., 2009, 2, 745; K. Mori, H. Yamashita and
M. Anpo, RSC Adv., 2012, 2, 3165.
3
2 7
O .
When modied suitably, Sr
3
Ti
2
O
7
for PCRC application.
6
K. Teramura, H. S.-I. Okuoka, H. Tsuneoka, T. Shishido and
T. Tanaka, Appl. Catal., B, 2010, 96, 565.
Conclusions
7
S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan,
L. J. Wan, Z. S. Li, J. H. Ye, Y. Zhou and Z. G. Zou, Angew.
Chem., Int. Ed., 2010, 49, 6400.
N. Zhang, S. X. Ouyang, P. Li, Y. J. Zhang, G. C. Xi, T. Kako
and J. H. Ye, Chem. Commun., 2011, 47, 2041.
Neat and doped Sr Ti O samples have been prepared by
3
2 7
modied polymer complex method. The inuence of doping
has been investigated by detailed characterization of the cata-
lysts with XRD, EDXA, SEM, DRS, photo luminescence and X-ray
photo electron spectroscopic techniques. Doping/co-doping
with anions N, S and metals like Fe, results in the creation of
additional energy levels within the band gap, leading to the
absorption of visible light and also minimization of the
recombination of charge carriers. Formation of smaller crys-
tallites also reduces the probability for recombination. Layered
structure of Sr Ti O facilitates easy transport of charge carriers
3 2 7
and separation of oxidation/reduction reaction centers. These
factors contribute towards the signicant improvement in
activity for CO photo reduction on Sr Ti O co-doped with N, S
2 3 2 7
8
9
M. Halmann, M. Ulman and B. A. Blajeni, Sol. Energy, 1983,
31, 429; B. A. Blajeni, M. Halmann and J. Manassen, Sol.
Energy, 1980, 25, 165; H. Zhou, J. Guo, P. Li, T. Fan,
D. Zhang and J. Ye, Sci. Rep., 2013, 3, 1667, DOI: 10.1038/
srep.01667.
1
1
0 V. Jeyalakshmi, R. Mahalakshmy, K. R. Krishnamurthy and
th
B. Viswanathan, 6 Asia Pacic Congress on Catalysis-
APCAT-6, Taipei, Tai, Oct 13–17, 2013.
1 K. Iizuka, T. Wato, Y. Miseki, K. Saito and A. Kudo, J. Am.
Chem. Soc., 2011, 133, 20863.
and Fe together, wherein the inuence of dopants is maximum.
1
1
2 A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253.
3 H. Jeong, T. Kim, D. Kim and K. Kim, Int. J. Hydrogen Energy,
2006, 31, 1142.
Acknowledgements
14 M. Yoshino, M. Kakihana, W. S. Cho, H. Kato and A. Kudo,
Chem. Mater., 2002, 14, 3369.
NCCR gratefully acknowledges the continuous and generous
support provided to the project, by M/s Hindustan Petroleum
Corpn Ltd, Mumbai, the support rendered by the Department of
Science & Technology, Govt. of India, New Delhi, for establish-
ing NCCR with all laboratory facilities and Indian Institute of
Technology Madras, Chennai, for all administrative and infra-
structure support.
1
5 K. Rajalakshmi, V. Jeyalakshmi, K. R. Krishnamurthy and
B. Viswanathan, Indian J. Chem., Sect. A: Inorg., Bio-inorg.,
Phys., Theor. Anal. Chem., 2012, 51, 411.
16 U. Sulaeman, S. Yin and T. Sato, J. Nanomaterials, 2010, 2010,
6
29727.
7 J. Wang, H. Li, H. Li, S. Yin and T. Sato, Solid State Sci., 2009,
1, 182.
1
1
1
1
8 X. Zhou, J. Shi and C. Li, J. Phys. Chem. C, 2011, 115, 8305.
9 T. Ohno, T. Tsubota, Y. Nakamura and K. Sayama, Appl.
Catal., A, 2005, 288, 74.
Notes and references
1
Y. Izumi, Coord. Chem. Rev., 2013, 257, 171; V. Jeyalakshmi,
K. Rajalakshmi, R. Mahalakshmy, K. R. Krishnamurthy and 20 D. C. Meyer, A. A. Levin, T. Leisegang, E. Gutmann,
B. Viswanathan, Res. Chem. Intermed., 2013, 39, 2565;
V. Jeyalakshmi, R. Mahalakshmy, K. R. Krishnamurthy and
P. Pauer, M. Reibold and W. Pompe, Appl. Phys. A: Mater.
Sci. Process., 2006, 84, 31.
B. Viswanathan, Matl. Sci. Form, Trans Tech. Pub, 21 T.-H. Xie, X. Sun and J. Lin, J. Phys. Chem. C, 2008, 112, 9753.
Switzerland, 2013, 734, pp. 1–62; T. J. Meyer, 22 F. J. Morin and J. R. Oliver, Phys. Rev. B: Solid State, 1973, 8,
J. M. Papanikolas and C. M. Heyer, Catal. Lett., 2011, 141, 1.
5847.
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 5958–5966 | 5965