Please do not adjust margins
New Journal of Chemistry
Page 7 of 9
DOI: 10.1039/C8NJ04115F
Journal Name
ARTICLE
composition of the products were characterized by means of a
high-resolution transmission electron microscope (HRTEM,
JEM 2100F) and X-ray photoelectron spectroscopy (XPS,
ESCALAB 250). The content of K was also analyzed by
inductively coupled plasma atomic emission spectroscopy (ICP-
AES, Thermo iCAP6300). The surface area was determined by a
Notes and references
1
a) B. Xiao, Z. Niu, Y.-G. Wang, W. Jia, J. Shang, L. Zhang, D.
Wang, Y. Fu, J. Zeng, W. He, K. Wu, J. Li, J. Yang, L. Liu and Y.
Li, J. Am. Chem. Soc., 2015, 137, 3791-3794; b) K. Zhou, Y. Li,
Angew. Chem. Int. Ed. 2012, 51, 602-613; c) X. Mou, B. Zhang,
Y. Li, L. Yao, X. Wei, D. S. Su and W. Shen, Angew. Chem. Int.
Ed. 2012, 51, 2989 –2993.
Tristar
Ⅱ3020 N2 adsorption analyser. The precursor (50 mg)
2
3
4
5
6
7
R. Ameloot, F. Vermoortele, W. Vanhove, M. B. Roeffaers, B.
F. Sels and D. V. De Vos, Nat. Chem. 2011, 3, 382-387.
J. Liu, H. Q. Yang, F. Kleitz, Z. G. Chen, T. Yang, E. Strounina, G.
Q. Lu and S. Z. Qiao, Adv. Funct. Mater. 2012, 22, 591-599.
J. B. Joo, M. Dahl, N. Li, F. Zaera and Y. Yin, Energy Environ.
Sci. 2013, 6, 2082-2092.
G. A. Somorjai, J. Y. Park, Angew. Chem., Int. Ed. 2008, 47,
9212–9228.
J. Wang, H. Li, D. Li, J. P. D. Breejen and B. Hou, RSC Adv.
was placed in a quartz reactor and was reduced by a 5% H2/N2
gas mixture at a flow rate of 50 mL/min, as the TPR
experiments were performed. MES experiments were carried
out in an MR-351 constant acceleration Mössbauer
spectrometer (FAST, Germany) drive with
a triangular
reference signal at room temperature. Data analysis was
performed using a non-linear least-squares fitting routine that
modeled the spectra as a combination of quadruple doublets,
and magnetic sextets based on a Lorentzian line shape profile.
The components were identified based on their isomer shift
(IS), quadruple splitting (QS), and magnetic hyperfine fields
(Hhf). The magnetic hyperfine fields were calibrated with the
330 kOe field of α-Fe at ambient temperature.
2015, 5, 65358-65364.
H. Becker, R. Guttel, T. Turek, Catal. Sci. Technol. 2016, 6,
275-287.
8
9
Y. Liu, J. F. Chen, Y. Zhang, RSC Adv. 2015, 5, 29002-29007.
W. Chen, Z. Fan, X. Pan, X. Bao, J. Am. Chem. Soc. 2008, 130,
9414-9419.
10 a) S. O. Moussa, L. S. Panchakarla, M. Q. Ho, M. S. El-Shall,
ACS Catal. 2014, 3, 535-545; b) R. P. Mogorosi, N. Fischer, M.
Claeys, E. van Steen, J. Catal. 2012, 289, 140-150; c) B. Sun,
K. Xu, L. Nguyen, M. Qiao, F. Tao, ChemCatChem 2012, 4,
1498-1511.
Catalytic Reaction
The catalytic behaviour was investigated in a fixed bed reactor.
1.0 g of catalyst was diluted with 1 mL of quartz powder
(60−80 mesh). The produced catalysts were reduced at 300 °C
and 0.2 MPa for 16 h by CO with a gas hourly space velocity
(GHSV) of 5 Lg-1h-1. After in-situ reduction, the reactor was
cooled to 50 °C, the synthesis gas (nH2/nCO=2, GHSV = 10 Lg-1h-1)
was fed into the catalysts bed and the temperature was
increased at 1.0 °Cmin-1 heating rate to 280 °C. During testing,
the pressure of synthesis gas was maintained at 2.0 MPa, and
the reaction products passed a 130 °C hot trap and a 5 °C
cooling trap at working pressure. The composition of the
reactants and tail gas were analyzed online by gas
chromatography (GC). The CO, CO2, CH4 and N2 were analyzed
by using a carbon molecular sieve column and thermal
conductivity detector (TCD). The light hydrocarbons were
analyzed using a capillary porapak-Q column with a flame
ionization detector (FID). The oil and wax were analyzed offline
using GC with an OV-101 capillary column and an FID. The
catalytic activity, expressed as iron time yield (FTY), was
expressed as moles of CO converted to hydrocarbons per gram
of Fe per second. The hydrocarbon selectivities were
calculated on a carbon basis with the exception of CO2. An
average of 3% and a maximum of 5% mass and carbon balance
errors were calculated for the run.
11 C. M. Parlett, K. Wilson, A. F. Lee, Chem. Soc. Rev. 2013, 42,
3876-3893.
12 a) L. Hu, Q. Chen, Nanoscale 2014, 6, 1236-1257; b) W. Xia, A.
Mahmood, R. Zou, Q. Xu, Energy Environ. Sci. 2015, 8, 1837-
1866; c) L. Zhang, H. B. Wu, X. W. Lou, J. Am. Chem. Soc.
2013, 135, 10664–10672.
13 F. X. Ma, H. Hu, H. B. Wu, C. Y. Xu, Z. Xu, L. Zhen and X. W.
Lou, Adv. Mater. 2015, 27, 4097-4101.
14 L. Shen, L. Yu, X. Y. Yu, X. Zhang and X. W. Lou, Angew. Chem.
Int. Ed. 2015, 54, 1868-1872.
15 a) J. Sun, Y. Chen, J. Chen, Catal. Commun. 2017, 91, 34-37; b)
T. Yamashita, P. Hayes, Appl. Sur. Sci. 2008, 254, 2441-2449;
c) S. Bharathi, D. Nataraj, M. Seetha, D. Mangalaraj, N.
Ponpandian, Y. Masuda, K. Senthil, K. Yong, Crystengcomm
2010, 12, 373-382.
16 X. Zhang, Y. Niu, X. Meng, Y. Li, J. Zhao, CrystEngComm 2013
15, 8166-8172.
,
17 Y. Cheng, J. Lin, K. Xu, H. Wang, X. Yao, Y. Pei, S. Yan, M.
Qiao, B. Zong, ACS Catal. 2016, 6,389−399.
18 V. P. Santos, T. A. Wezendonk, A. I. Dugulan, M. A.
Nasalevich, H. U. Islam, A. Chojecki, S. Sartipi, X. Sun, A. A.
Hakeem, A. C. Koeken, M. Ruitenbeek, T. Davidian, G. R.
Meima, G. Sankar, F. Kapteijn, M. Makkee and J. Gascon, Nat.
Commun. 2015, 6, 6451-6458.
19 a) K. Woo, J. Hong, S. Choi, H. W. Lee, J. P. Ahn, C. S. Kim, W.
L. Sang, Chem. Mater. 2004, 16, 2814-2818; b) E. Tronc, A.
Ezzir, R. Cherkaoui, C. Chanéac, M. Noguès, H. Kachkachi, D.
Fiorani, A. M. Testa, J. M. Grenèche and J. P. Jolivet, J. Magn.
& Magn. Mater. 2000, 221, 63-79.
20 H. M. Torres Galvis, K. P. de Jong, ACS Catal. 2013, 3, 2130–
2149.
Conflicts of interest
21 a) J. Zielin´ski, I. Zglinicka, L. Znak, Z. Kaszkur, Appl. Catal., A
2010, 381, 191–196; b) X. Mou, X. Wei, Y. Li, W. Shen,
Crystengcomm 2012, 14, 5107-5120.
There are no conflicts to declare.
22 a) J. Sun, Y. Chen, J. Chen, Catal. Sci. Technol. 2016, 6, 7505–
7511; b) J. Tu, M. Ding, Y. Zhang, Y. Li, T. Wang, L. Ma, C.
Wang, X. Li, Catal. Commun. 2015, 59, 211–215; c) Y. Liu, J.
Chen, J. Bao, Y. Zhang, ACS Catal., 2015, 5, 3905–3909; d) G.
Yu, B. Sun, Y. Pei, S. Xie, S. Yan, M. Qiao, K. Fan, X. Zhang and
B. Zong, J. Am. Chem. Soc. 2010, 132, 935-937; e) B. Sun, Z.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (No.21503256 and 21373254) and
the autonomous research project of SKLCC (No. 2013BWZ004).
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 7
Please do not adjust margins