10.1002/cctc.202000794
ChemCatChem
FULL PAPER
positive charge of CSDAs was balanced by the background charge of the
system, and the energetics were calibrated using charged ammonia for the
comparison of interaction energies of CSDAs in AlPO-34 and AlPO-5.
[5] H. Q. Yang, Z. C. Liu, H. X. Gao, Z. K. Xie, J. Mater. Chem. 2010, 20,
3227-3231.
[6] a) X. X. Chen, A. Vicente, Z. X. Qin, V. Ruaux, J. P. Gilson, V. Valtchev,
Chem. Commun. 2016, 52, 3512-3515; b) Y. Y. Qiao, M. Yang, B. B. Gao,
L. Y. Wang, P. Tian, S. T. Xu, Z. M. Liu, Chem. Commun. 2016, 52, 5718-
5721.
Characterization
[7] F. Schmidt, S. Paasch, E. Brunner, S. Kaskel, Microporous Mesoporous
Mater. 2012, 164, 214-221.
XRD patterns were obtained using Bruker D8 Advance diffractometer, with
an accelerated voltage of 40 kV and detector current of 200 mA. Cu-Kα
radiation (λ = 51.540589 Å) was used for a continuous scanning with the
[8] a) Y. Cui, Q. Zhang, J. He, Y. Wang, F. Wei, Particuology 2013, 11, 468-
474; b) Q. M. Sun, N. Wang, G. Q. Guo, X. X. Chen, J. H. Yu, J. Mater.
Chem. A 2015, 3, 19783-19789; c) L. T. Kong, B. X. Shen, Z. Jiang, J. G.
Zhao, J. C. Liu, React. Kinet.,Mech. Cat. 2015, 114, 697-710; d) C. Wang,
M. Yang, W. N. Zhang, X. Su, S. T. Xu, P. Tian, Z. M. Liu, RSC Adv. 2016,
6, 47864-47872.
step-size of 0.02° over
a 2θ range of 5-50°. X-ray fluorescence
spectroscopy was obtained on Bruker S4 Pioneer. N2 Adsorption and
desorption isotherms were collected on Micromeritics TriStar3000 at 75 K.
Prior to the measurements, the sample was degassed at 350 °C until a
stable vacuum of about 0.67 Pa was reached. FE-SEM (Field Emission
Scanning Electron Microscopy) analysis was performed on a Hitachi
S4800 electron microscope with an accelerating voltage of 2.0 kV. HRTEM
was performed using JEOL JEM-2100LaB6 operating at 200 kV (Cs = 1.0
mm, point resolution of 2.3 Å). Images were recorded with a Keen View
CCD camera (resolution of 1376 pixels × 1032 pixels, pixel size of 6.45 μm
× 6.45 μm) at 50000−120000× magnification under low-dose conditions.
The 1H NMR, 13C NMR spectra and solid-state MAS NMR were recorded
on an JNM-ECZ500R/S1 spectrometer with chemical shifts reported in
ppm relative to the residual deuterated solvent and the internal standard
tetramethylsilane (TMS). Temperature-programmed desorption of
ammonia (NH3-TPD) experiments were performed on a chemisorption
analyzer (FINETEC FINSORB-3010). Mercury intrusion porosimetry was
obtained on Pascal 140/240, produced by Thermo Electron. TGA curves
were performed on TGA 7 thermogravimetric analyzer (Perkin Elmer, Inc.,
USA). The heating rate was 20 °C/min. The results of XRF were obtained
on XRF-1800, produced by SHIMADZU.
[9] a) X. H. Bu, P. Y. Feng, G. D. Stucky, Science 1997, 278, 2080-2085; b)
M. Moliner, F. Rey, A. Corma, Angew. Chem., Int. Ed. 2013, 52, 13880-
13889; c) S. Ramzy M, J. Am. Chem. Soc. 2011, 46, 18728-18741; d) R.
Francis, D. O'Hare, J. Chem. Soc., Dalton Trans. 1998, 19, 3133-3148; e)
B. M. Lok, T. R. Cannan, C. A. Messina, Zeolites 1983, 3, 282-291.
[10] a) W. Chaikittisilp, Y. Suzuki, R. R. Mukti, T. Suzuki, K. Sugita, K. Itabashi,
A. Shimojima, T. Okubo, Angew. Chem. 2013, 125, 3439-3443; b) S. H.
Keoh, W. Chaikittisilp, K. Muraoka, R. R. Mukti, A. Shimojima, P. Kumar,
M. Tsapatsis, T. Okubo, Chem. Mater. 2016, 28, 8997-9007; c) D. D. Xu,
Y. H. Ma, Z. F. Jing, L. Han, B. Singh, J. Feng, X. F. Shen, F. L. Cao, P.
Oleynikov, H. Sun, O. Terasaki, S. A. Che, Nat. Commun. 2014, 5, 4262;
d) X. L. Jia, Y. J. Zhang, Z. Gong, B. Wang, Z. G. Zhu, J. G. Jiang, H. Xu,
H. Sun, L. Han, P. Wu, S. A. Che, J. Phys. Chem. C 2018, 122, 9117-
9126; e) D. D. Xu, Z. F. Jing, F. L. Cao, H. Sun, S. A. Che, Chem. Mater.
2014, 26, 4612-4619.
[11] S. Aghamohammadi, M. Haghighi, M. Charghand, Mater. Res. Bull. 2014,
50, 462-475.
[12] B. B. Gao, P. Tian, M. R. Li, M. Yang, Y. Y. Qiao, L. Y. Wang, S. T. Xu, Z.
M. Liu, J. Mater. Chem. A 2015, 3, 7741-7749.
Catalytic tests
[13] a) D. Y. Xi, Q. M. Sun, J. Xu, M. Cho, H. S. Cho, S. Asahina, Y. Li, F. Deng,
O. Terasaki, J. H. Yu, J. Mater. Chem. A 2014, 2, 17994-18004; b) L.
Karwacki, E. Stavitski, M. H. F. Kox, J. Kornatowski, B. M. Weckhuysen,
Angew. Chem., Int. Ed. 2007, 46, 7228-7231.
The reaction products were analyzed using an on-line gas chromatograph
(Agilent GC 7890N), equipped with a flame ionization detector (FID) and
Plot-Q column (Agilent J&W GC Columns, HP-PLOT/Q 19091-Q04, 30 m
× 320 μm × 10 μm). The conversion and selectivity were calculated on CH2
basis and dimethyl ether (DME) was considered as reactant in the
calculation.
[14] a) A. Buchholz, W. Wang, M. Xu, A. Arnold, M. Hunger, J. Phys. Chem. B
2004, 108, 3107-3113; b) T. H. Chen, B. H. Wouters, P. J. Grobet, J. Phys.
Chem. B 1999, 103, 6179-6184.
[15] a) Ø. B. Vistad, E. W. Hansen, D. E. Akporiaye, K. P. Lillerud, J. Phys.
Chem. A 1999, 103, 2540-2552; b) A. V. McCormick, A. T. Bell, C. J.
Radke, J. Phys. Chem. 1989, 93, 1741-1744.
Acknowledgements
[16] Q. M. Sun, Y. H. Ma, N. Wang, X. Li, D. Y. Xi, J. Xu, F. Deng, K. B. Yoon,
P. Oleynikov, O. Terasaki, J. H. Yu, J. Mater. Chem. A 2014, 2, 17828-
17839.
This work was supported by the National Key Research and
Development Program of China (Grant No. 2016YFB0701100).
[17] G. J. Yang, Y. X. Wei, S. T. Xu, J. R. Chen, J. Z. Li, Z. M. Liu, J. H. Yu, R.
R. Xu, J. Phys. Chem. C 2013, 117, 8214-8222.
[18] a) J. Tan, Z. M. Liu, X. H. Bao, X. C. Liu, X. W. Han, C. Q. He, R. S. Zhai,
Microporous Mesoporous Mater. 2002, 53, 97-108; b) T. Álvaro-Muñoz, C.
Márquez-Álvarez, E. Sastre, Appl. Catal., A 2014, 472, 72-79.
[19] W. L. Shen, X. Li, Y. X. Wei, P. Tian, F. Deng, X. W. Han, X. H. Bao,
Microporous Mesoporous Mater. 2012, 158, 19-25.
Keywords: Amphipathic molecules • Geometrical matching •
Hierarchical zeolite • SAPO-34 zeolite
[1] a) A. Corma, Chem. Rev. 1995, 95, 559-614; b) W. F. Hölderich, G.
Heitmann, Catal. Today 1997, 38, 227-233; c) M. J. Verhoef, P. J.
Kooyman, J. C. van der Waal, M. S. Rigutto, J. A. Peters, H. van Bekkum,
Chem. Mater. 2001, 13, 683-687; d) C. S. Cundy, P. A. Cox, Chem. Rev.
2003, 103, 663-702; e) J. Čejka, B. Wichterlová, Catal. Rev.; Sci. Eng.
2002, 44, 375-421.
[20] X. T. Wang, R. Li, S. U. H. Bakhtiar, F. L. Yuan, Z. B. Li, Y. J. Zhu, Catal.
Commun. 2018, 108, 64-67.
[21] B. B. Gao, M. Yang, Y. Y. Qiao, J. Z. Li, X. Xiang, P. F. Wu, Y. X. Wei, S.
T. Xu, P. Tian, Z. M. Liu, Catal. Sci. Technol. 2016, 6, 7569-7578.
[22] D. Fan, P. Tian, S. T. Xu, D. H. Wang, Y. Yang, J. Z. Li, Q. Y. Wang, M.
Yang, Z. M. Liu, New J. Chem. 2016, 40, 4236-4244.
[2] a) U. Olsbye, S. Svelle, M. Bjørgen, P. Beato, T. V. W. Janssens, F.
Joensen, S. Bordiga, K. P. Lillerud, Angew. Chem., Int. Ed. 2012, 51,
5810-5831; b) P. Tian, Y. X. Wei, M. Ye, Z. M. Liu, ACS Catal. 2015, 5,
1922-1938.
[23] I. Miletto, C. Ivaldi, G. Paul, S. Chapman, L. Marchese, R. Raja, E. Gianotti,
ChemistryOpen 2018, 7, 297-301.
[24] S. Muller, Y. Liu, F. M. Kirchberger, M. Tonigold, M. Sanchezsanchez, J.
A. Lercher, J. Am. Chem. Soc. 2016, 138, 15994-16003.
[3] a) B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, E.
M. Flanigen, J. Am. Chem. Soc. 1984, 106, 6092-6093; b) Q. M. Sun, N.
Wang, D. Y. Xi, M. Yang, J. H. Yu, Chem. Commun. 2014, 50, 6502-6505.
[4] X. C. Zhu, J. P. Hofmann, B. Mezari, N. Kosinov, L. L. Wu, Q. Y. Qian, B.
M. Weckhuysen, S. Asahina, J. Ruiz-Martínez, E. J. M. Hensen, ACS
Catal. 2016, 6, 2163-2177.
[25] a) S. Ilias, A. Bhan, ACS Catal. 2013, 3, 18-31; b) S. Ilias, A. Bhan, J.
Catal. 2012, 290, 186-192.
[26] a) I. Yarulina, A. D. Chowdhury, F. Meirer, B. M. Weckhuysen, J. Gascon,
Nat. Catal. 2018, 1, 398-411; b) J. J. Su, H. B. Zhou, S. Liu, C. M. Wang,
W. Q. Jiao, Y. D. Wang, C. Liu, Y. C. Ye, L. Zhang, Y. Zhao, H. X. Liu, D.
Wang, W. M. Yang, Z. K. Xie, M. Y. He, Nat. Commun. 2019, 10, 1297.
6
This article is protected by copyright. All rights reserved.