Desulfinylation of Prop-2-enesulfinic Acid
A R T I C L E S
compounds.41-47 Exothermicities of ca. -13.4 and -15.6 kcal/
mol are estimated for the ene-reactions of triplet dioxygen (based
on ∆H°(MeOOH) ) -31.3 kcal/mol, ∆H°(CH4) ) -17.9 kcal/
reaction follows a concerted process62 similar to that proposed
for 3 f 2 f 1. After complex formation between SeO2 and
the alkene, direct transfer of the allylic C-H to the OdSe
moiety occurs in concert with the C-Se bond formation and
the allylic rearrangement. Intermediates such as 1,4-diradical
MeC•H-CH2-Se(O)-O• T zwitterion MeC+HCH2Se(O)O-,
selenirane 1,1-dioxide (analogous to the [1 + 2]-cheletropic
addition of SdO) or 1,2-oxaselenetane 2-oxide (analogous to
ꢀ-sultones) formed by [2 + 2]-cycloaddition of SeO2 to alkenes
have not been detected63,64 (Scheme 2).
f
f
mol14) and diazene (based on ∆H°(HNdNH) ) 50.9 kcal/mol;
f
∆H°(propane) ) -25.0 kcal/mol, ∆H°(CH3CH2CH2NHNH2)
f
f
) +11.4 kcal/mol14). For the estimate of the heat of ene-reaction
of nitroso compounds giving hydroxylamines derivatives (ca.
-28 kcal/mol), we have considered the standard heat of
hydrogenation ∆H°(H-NdO + H2 f H2NOH) ) -35.7
r
kcal/mol48,49 and compared it with the standard heats of
hydrogenation ∆H°(CH2O + H2 f MeOH) ) -21.3 kcal/mol
r
Although the thermal decarboxylation of but-3-enoic acid into
CO2 and propene is exothermic by ca. +5.3 kcal/mol (based
on ∆H°(propane) ) -25.0 kcal/mol, ∆H°(CO2) ) -94.05 kcal/
and ∆H°(CH2dNH + H2 f MeNH2) ) -21.6 kcal/mol which
r
are about -8 kcal/mol more exothermic than the corresponding
f
f
heats of hydrocarbation. Thus, adding to ∆H°(HNO + H2 f
r
mol, ∆H°(butanoic acid) ) -113.7 kcal/mol14), and that it is a
f
H2NOH) this difference of +8 kcal/mol, we estimate the heat
of hydrocarbation of a nitroso compound to amount to ca. -28
kcal/mol (Table 1). In the case of the hydrocarbation of N2 one
estimates a endothermicity of ca. +64.6 kcal/mol (based on
∆H°(MeCH2-CH2-NdNH) ) ∆H°(MeCH2CH2NHNH2)sheat
reaction more exergonic than the desulfinylation of prop-2-ene-
1-sulfinic acid, it requires much higher temperatures to occur
(>300 °C)66 than the latter reaction that occurs below 20 °C
already in solution. Substituent effects on the activation
enthalpy,67-71 kinetic isotopic effects,72 as well as quantum
calculations73-77 support a concerted, six-membered mechanism
in which the carboxylic hydrogen atom is transferred to C(4)
of the but-3-enoic acid in concert with the σ(C(2)-C(1)) bond
breaking (∆H‡ ) 38 ( 1.6 kcal/mol, ∆S‡ ) -10.2 ( 2.5 e.u.
at 377 °C). An analogous reaction is the thermolysis of
homoallylic alcohol which fragmentates into propene and
formaldehyde above 300 °C (∆H‡ = 40 kcal/mol, ∆S‡ ) -8.8
e.u.78,79 see also the retro-ene reaction of propargyl alcohols80)
follow a similar concerted mechanism. Thermolysis (287-375
°C) of allyl ethyl ether giving CH3CHO + propene might also
follow a similar concerted retro-ene mechanism,81,82 as well as
thermolysis of allyl methyl amine giving propene + CH2dNH
(330-420 °C)83 (Scheme 2A). Retro-ene elimination of thio-
aldehydes or thioketones from ꢀ,γ-unsaturated thiols is not
f
f
of hydrogenation of azene of -28.1 kcal/mol), and thus, only
the retro-ene elimination of N2 can be observed.50-52 The ene-
reaction of sulfur trioxide (SO3) is also estimated to be
exothermic by ca. -31.4 kcal/mol based on a heat of hydro-
carbation of SO3 of -126 kcal/mol13 and ∆H°(SO3, gas) )
f
-94 6 kcal/mol. SO3 adds to alkenes with high suprafaciality
at -60 °C giving the corresponding ꢀ-sulfones53,54 that can be
rearranged into the corresponding ꢀ,γ-unsaturated sulfonic
acids.55 Related to the ene-reaction of SO2 is the allylic C-H
56-58
oxidation with SeO2
which occur through an initial ene
reaction followed by a [2,3]-sigmatropic shift.59-61 The ene-
(36) Brimble, M. A.; Heathcock, C. H. J. Org. Chem. 1993, 58, 5261–
5263.
(37) Alberti, M. N.; Vougioukalakis, G. C.; Orfanopoulos, M. Tetrahedron
Lett. 2003, 44, 903–905.
(38) Vougioukalakis, G. C.; Roubelakis, M. M.; Alberti, M. N.; Orfan-
opoulos, M. Chem.sEur. J. 2008, 14, 9697–9705.
(39) Roubelakis, M. M.; Vougioukalakis, G. C.; Angelis, Y. S.; Orfan-
opoulos, M. Org. Lett. 2006, 8, 39–42.
(60) Arigoni, D.; Vasella, A.; Sharpless, K. B.; Jensen, H. P. J. Am. Chem.
Soc. 1973, 95, 7917–7919.
(61) Woggon, W. D.; Ruther, F.; Egli, H. J. Chem. Soc. Chem. Commun.
1980, 706–708.
(40) Lu, X. Org. Lett. 2004, 6, 2813–2815.
(41) Adam, W.; Bottke, N.; Krebs, O. J. Am. Chem. Soc. 2000, 122, 6791–
6792.
(62) Singleton, D. A.; Hang, C. J. Org. Chem. 2000, 65, 7554–7560.
(63) Ra, C. S.; Park, G. Tetrahedron Lett. 2003, 44, 1099–1102.
(64) Ra, C. S.; Park, E. M.; Park, G. Bull. Korean Chem. Soc. 2008, 29,
2513–2516.
(42) Adam, W.; Bottke, N.; Engels, B.; Krebs, O. J. Am. Chem. Soc. 2001,
123, 5542–5548.
(43) Leach, A. G.; Houk, K. N. Chem. Commun. 2002, 1243–1255.
(44) Adam, W.; Bottke, N.; Krebs, O.; Lykakis, I.; Orfanopoulos, M.;
Stratakis, M. J. Am. Chem. Soc. 2002, 124, 14403–14409.
(45) Quadrelli, P.; Romano, S.; Piccanello, A.; Caramella, P. J. Org. Chem.
2009, 74, 2301–2310.
(65) Crawford, R. J.; Lutener, S.; Tokunaga, H. Can. J. Chem. 1977, 55,
3951–3954.
(66) Smith, G. G.; Blau, S. E. J. Phys. Chem. 1964, 68, 1231–1234.
(67) Bigley, D. B. J. Chem. Soc. 1964, 3897–3899.
(68) Noyce, D. S.; Heller, R. A. J. Am. Chem. Soc. 1965, 87, 4325–4328.
(69) Bigley, D. B.; Thurman, J. C. J. Chem. Soc. 1965, 6202–6205.
(70) Bigley, D. B.; Thurman, J. C. J. Chem. Soc. B: Phys. Org. 1966,
1076–1077.
(46) Adam, W.; Krebs, O.; Orfanopoulos, M.; Stratakis, M.; Vou-
gioukalakis, G. C. J. Org. Chem. 2003, 68, 2420–2425.
(47) Fokin, A. A.; Yurchenko, A. G.; Rodionov, V. N.; Gunchenko, P. A.;
Yurchenko, R. I.; Reichenberg, A.; Wiesner, J.; Hintz, M.; Jomaa,
H.; Schreiner, P. R. Org. Lett. 2007, 9, 4379–4382.
(48) Anderson, W. R. Combust. Flame 1999, 117, 394–403.
(49) Feller, D.; Dixon, D. A. J. Phys. Chem. A 2003, 107, 10419–10427.
(50) Jabbari, A.; Sorensen, E. J.; Houk, K. N. Org. Lett. 2006, 8, 3105–
3107.
(71) Bigley, D. B.; May, R. W. J. Chem. Soc. B: Phys. Org. 1967, 557–
560.
(72) Bigley, D. B.; Thurman, J. C. J. Chem. Soc. B: Phys. Org. 1967,
941–943.
(73) Dewar, M. J. S.; Ford, G. P. J. Am. Chem. Soc. 1977, 99, 8343–
8344.
(51) Ripoll, J. L.; Vallee, Y. Synthesis 1993, 659–677.
(52) Mikami, K.; Shimizu, M. Chem. ReV. 1992, 92, 1021–1050.
(53) Nagayama, M.; Okumura, O.; Noda, S.; Mori, A. J. Chem. Soc. Chem.
Commun. 1973, 841.
(74) Lee, I.; Cho, J. K. Bull. Korean Chem. Soc. 1984, 5, 51–52.
(75) Lee, I.; Cho, J. K.; Lee, B. S. J. Comput. Chem. 1984, 5, 217–224.
(76) Wang, Y. L.; Poirier, R. A. Can. J. Chem. 1994, 72, 1338–1346.
(77) Dunn, M. E.; Shields, G. C.; Takahashi, K.; Skodje, R. T.; Vaida,
V. J. Phys. Chem. A 2008, 112, 10226–10235.
(54) Morley, J. O.; Roberts, D. W.; Watson, S. P. J. Chem. Soc. Perkin
Trans. 2 1999, 1819–1826.
(78) Smith, G. G.; Yates, B. L. J. Chem. Soc. 1965, 7242–7246.
(79) Inaba, T.; Sakamoto, M.; Watanabe, S.; Takahashi, I.; Fujita, T.
J. Chem. Technol. Biotechnol. 1990, 48, 483–492.
(80) Hopf, H.; Kirsch, R. Angew. Chem. 1985, 24, 796–797.
(81) Egger, K. W.; Vitins, P. Int. J. Chem. Kinet. 1974, 6, 429–435.
(82) Vitins, P.; Egger, K. W. J. Chem. Soc. Perkin Trans. 2 1974, 1292–
1293.
(55) Cerfontain, H.; Kramer, J. B.; Schonk, R. M.; Bakker, B. H. J. R.
Netherlands Chem. Soc. 1995, 114, 410–420.
(56) Dupont, G.; Zacharewicz, W. Bull. Soc. Chim. Fr. 1935, 2, 533–
539.
(57) Guillemonat, A. Ann. Chem. Fr. 1939, 11, 143–211.
(58) Wiberg, K. B.; Nielsen, S. D. J. Org. Chem. 1964, 29, 3353–3361.
(59) Sharples, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1972, 94, 7154–
7155.
(83) Vitins, P.; Egger, K. W. J. Chem. Soc. Perkin Trans. 2 1974, 1289–
1291.
9
J. AM. CHEM. SOC. VOL. 131, NO. 27, 2009 9549