MedChemComm
Research Article
growth inhibition of 28% and 29%. Our nanomolar EGFR in-
hibitor 13b with the comparably best IGF-1R affinity caused a
growth inhibition of 89% and 73%.
4 N. Normanno, A. De Luca, C. Bianco, L. Strizzi, M. Mancino,
M. R. Macello, A. Carotenuto, G. De Feo, F. Caponigro and
D. S. Salomon, Gene, 2006, 366, 2.
Our first screening results prove that our inhibitor 13b
with the best dual affinities towards EGFR and IGF-1R may
become a promising drug candidate to combat cell growth in
non-small lung cancer.
5 M. K. Needergard, C. J. Hedegaard and H. S. Poulsen,
BioDrugs, 2012, 26, 83.
6 H. Masuda, D. Zhang, C. Bartholomeusz, H. Doihara, G. N.
Hortobagyi and N. T. Ueno, Breast Cancer Res. Treat.,
2012, 136, 331.
Conclusion
7 G. Metro, G. Finocchiaro, L. Toschi, S. Bartolini, E. Magrini,
A. Cancellieri, R. Trisolini, L. Castaldini, G. Tallini, L. Crino
and F. Cappuzzo, Rev. Recent Clin. Trials, 2006, 1, 1.
8 V. Grünwald and M. Hidalgo, Curr. Probl. Cancer, 2002, 26,
109.
9 J. Zhang, P. L. Yang and N. S. Gray, Nat. Rev. Cancer,
2009, 9, 28.
10 E. Martinelli, R. De Palma, M. Orditura, F. De Vita and F.
Ciardiello, Clin. Exp. Immunol., 2009, 158, 1.
11 H. Yasuda, E. Park, Ch. H. Yun, A. R. Lucena-Araujo, W. L.
Yeo, M. S. Hubeman, D. W. Cohen, S. Nakavama, K. Ishioka,
N. Yamaguchi, M. Hanna, G. R. Qxnard, C. S. Lathan, T.
Moran, L. V. Sequist, J. E. Chaft, G. J. Riely, M. E. Arcila,
R. A. Soo, M. Meyerson, M. J. Eck, S. S. Kobayashi and D. B.
Costa, Sci. Transl. Med., 2014, 6, 225.
12 M. D. Siegelin and A. C. Borczuk, Lab. Invest., 2014, 94, 129.
13 C. M. Lovly, L. Horn and W. Pao, My Cancer Genome, 2015,
cancer/egfr/.
14 R. Sordella, D. W. Bell and J. Settleman, Science, 2004, 305, 1163.
15 M. Ladanyi and W. Pao, Mod. Pathol., 2008, 21(Suppl. 2),
S16.
16 D. G. Pfister, J. Clin. Oncol., 2013, 31, 3487.
17 A. Lange, A. Prenzler, M. Frank, M. Kirstein, A. Vogel and
J. M. von Schulenburg, Eur. J. Cancer, 2014, 50, 40.
18 Y. J. Yu-Jing, C. M. Zhang and Z. P. Liu, Anti-Cancer Agents
Med. Chem., 2012, 12, 391.
It can be concluded that our novel furo- and pyrrolopyridines
show EGFR and IGF-1R inhibiting activities which depend on
both the benzylamino and the molecular scaffold substitu-
tions. For the newly synthesized compound 15 of the
furopyridine type with a 4-methoxybenzylamine substituent
and without a substituent in the 6-position of the molecular
scaffold,29 we characterized the EGFR and IGF-1R inhibiting
properties, yielding 1.43 μM for EGFR-wt and 1.03 μM for
IGF-1R. That compound could have been screened for a first
selective kinase inhibition in a novel project. The compound
has been investigated to inhibit two EGFR mutants EGFR-
T790M and -L858R with both determined inhibition values
>100 μM, so that the compound was more sensitive to the
wild type EGFR. Further screening efforts included EGFR-
related kinases HER2 and HER4 as well as the related recep-
tor tyrosine kinases JAK2 and 3 and TIE-2 with similar values
>100 μM. If screened against a few other kinases from partly
different kinase families VEGFR2 and 3, PDGFR-β and GSK-
3β, we found no activity for the compound with inhibition
values >100 μM as determined. So we can document the first
selectivity to EGFR-wt and IGF-1R inhibition for this novel
compound class.
In our discussed structure–activity compound studies, we
identified the first dual inhibitors of both kinases with
submicromolar and nanomolar affinities, which showed
growth inhibition in EGFR-related breast and non-small lung
cancer cell lines. With reference to the reported EGFR- and
IGF-1R heterodimerization in such a non-small-lung cancer
tumor, our dual inhibitor 13b characterized to inhibit non-
small lung cancer cell growth may become an attractive com-
pound for further drug development.
19 S. Bugge, S. J. Kaspersen, S. Larsen, U. Nonstad, G. Bjoroy,
E. Sundby and B. H. Hoff, Eur. J. Med. Chem., 2014, 75, 354.
20 F. Morgillo, J. J. Woo, E. S. Kim, W. K. Hong and H.-Y. Lee,
Cancer Res., 2006, 66, 10100.
21 D. D. Wang, L. Ma, M. P. Wong, V. H. F. Lee and H. Yan,
PLoS One, 2015, 10, e0128360.
22 S. R. Hubbard and W. T. Miller, Curr. Opin. Cell Biol.,
2007, 19, 117.
Acknowledgements
23 J. Schlessinger, Cell, 2000, 103, 211.
24 T. Pawson, G. D. Gish and P. Nash, Trends Cell Biol.,
2001, 11, 504.
25 M. E. Irwin, K. L. Mueller, N. Bohin, Y. Ge and J. L. Boerner,
J. Cell. Physiol., 2011, 226, 2316.
The authors acknowledge the financial support of their work
by the DFG (German Research Foundation) to Cornelius
Hempel and to Andreas Hilgeroth within the project HI 687/
10-1.
26 J. L. Martin, H. C. de Silva, M. Z. Lin, C. D. Scott and R. C.
Baxter, Mol. Cancer Ther., 2014, 13, 316.
References
1 E. G. Giancotti, FEBS Lett., 2014, 588, 2559.
27 Y.-W. Zhang, B. Staal, Y. Su, P. Swiatek, P. Zhao, B. Cao, J.
Resau, R. Sigler, R. Bronson and G. F. Vande Woude,
Oncogene, 2007, 26, 269.
2 A. H. Bild, G. Yao, J. T. Chang, Q. Wang, A. Potti, D. Chasse,
M.-B. Joshi, D. Harpole, J. M. Lancaster, A. Berchuck, J. A.
Olson Jr., J. R. Marks, H. K. Dressman, M. West and J. R.
Nevins, Nature, 2006, 439, 353.
28 The increased inhibitory activities of compound 13b may be
plausible with the additional IGF-1R inhibitory properties re-
3 T. Wada and J. M. Penninger, Oncogene, 2004, 23, 2838.
ferred to in the literature.26
A
stimulation of EGFR
This journal is © The Royal Society of Chemistry 2016
Med. Chem. Commun.