4
Tetrahedron Letters
4. (a) Bryce, M. R. J. Mater. Chem. 2000, 10, 589–598; (b)
Receptor 1b: pale yellow crystalline powder. M.p. 160163 °C.
Rf = 0.75 (CH2Cl2). 1H NMR (360 MHz, CD2Cl2): δ 0.97 (t, 3J =
7.5 Hz, 9H), 2.68 (q, 3J = 7.5 Hz, 6H), 5.12 (s, 6H), 6.33 (s, 6H),
6.34 (s, 6H). 13C NMR (90 MHz, CD2Cl2): δ 15.5, 23.7, 48.0,
112.3, 114.8, 115.9, 119.0, 119.8, 130.8, 146.3. UV/Vis (CH2Cl2):
λmax (ε) 295 nm (32400 L mol-1 cm-1), 319 (30200), 425 sh (700).
Becher, J.; Jeppesen, J. O.; Nielsen, K. Synthetic Metals 2003,
133–134, 309–315.
5. Moonen, N. N. P.; Flood, A. H.; Fernández, J. M.; Stoddart, J. F.
Top. Curr. Chem. 2005, 262, 99–132.
6. (a) Azov, V. A.; Gómez, R.; Stelten, J. Tetrahedron 2008, 64,
1909–1917; (b) Skibiński, M.; Gómez, R.; Lork, E.; Azov, V. A.
Tetrahedron 2009, 65, 10348–10354; (c) Düker, M. H.; Gómez,
R.; Vande Velde, C. M. L.; Azov, V. A. Tetrahedron Lett. 2011,
52, 2881–2884.
MS (ESI+): m/z (%) 927 (60) [M]+·, 463.5 (100) [M]2+, 309 (10)
[M]3+·. HRMS (ESI+): m/z [M]+ Calcd. for C39H33N3S12
:
+
ox1
926.93199; Found 926.93175. CV (vs. SCE, CH2Cl2): E1/2
=
0.23 V, (E1/2ox2 = 0.74 V).
7. Düker, M. H.; Schäfer, H.; Zeller, M.; Azov, V. A. J. Org. Chem.,
2013, 78, 4905–4912.
22. (a) Nielsen, M. B.; Jeppesen, J. O.; Lau, J.; Lomholt, C.;
Damgaard, D.; Jacobsen, J. P.; Becher, J.; Stoddart, J. F. J. Org.
Chem. 2001, 66, 3559–3563; (b) Nygaard, S.; Hansen, C. N.;
Jeppesen, J. O. J. Org. Chem. 2007, 72, 1617–1626.
8. (a) Zong, K.; Chen, W.; Cava, M. P.; Rogers, R. D. J. Org. Chem.
1996, 61, 8117–8124; (b) Jeppesen, J. O.; Takimiya, K.; Jensen,
F.; Brimert, T.; Nielsen, K.; Thorup, N.; Becher, J. J. Org. Chem.
2000, 65, 5794–5805; (c) Jeppesen, J. O.; Becher, J. Eur. J. Org.
Chem. 2003, 3245–3266.
23. Concentration-dependent NMR chemical shifts serve as an
evidence for an aggregation process and can be employed for the
determination of self-association constants, see for example:
Martin, R. B. Chem. Rev. 1996, 96, 3043–3064.
24. (a) Moses, P. R.; Chambers, J. Q. J. Am. Chem. Soc. 1974, 96,
945–946; (b) González, M.; Illescas, B.; Martín, N.; Segura, J. L.;
Seoane, C.; Hanack, M. Tetrahedron, 1998, 54, 2853–2866.
25. The same behavior was observed for one of bis-tetrathiafulvalene-
calix[4]arene receptors, see ref. 7.
26. For a review on pyrrole dimerizetion, see: Sadki, S.; Schottland,
P.; Brodiec, B.; Sabouraud, G. Chem. Soc. Rev. 2000, 29, 283–
293.
27. See Supplementary Data for general experimental details, NMR
and UV/Vis spectra, and details on molecular modeling, CV, and
binding studies.
28. (a) Connors, A. K. Binding Constants: The Measurement of
Molecular Complex Stability; Wiley: New York, 1987; (b) Hirose,
K. J. Inclusion Phenom. Macrocyclic Chem. 2001, 39, 193–209.
29. For reviews on supramolecular gas phase chemistry, see: (a)
Weimann, D. P.; Kogej, M.; Schalley, C. A. Mass spectrometry
and gas phase chemistry of supramolecules. In Analytical Methods
in Supramolecular Chemistry (2nd Edition); Schalley, C. A., Ed.;
Wiley-VCH: Weinheim, 2012; Vol. 1, pp. 129–196; (b) Baytekin,
B.; Baytekin, H. T.; Schalley, C. A. Org. Biomol. Chem. 2006, 4,
2825–2841.
30. (a) Schalley, C. A.; Castellano, R. K.; Brody, M. S.; Rudkevich,
D. M.; Siuzdak, G.; Rebek, J., Jr. J. Am. Chem. Soc. 1999, 121,
4568–4579; (b) Beyeh, N. K.; Kogej, M.; Åhman, A.; Rissanen,
K.; Schalley, C. A. Angew. Chem. Int. Ed. 2006, 45, 5214–5218;
(c) Weimann, D. P.; Schalley, C. A. Supramol. Chem. 2008, 20,
117–128.
9. (a) Nielsen, K. A.; Cho, W.-S.; Lyskawa, J.; Levillain, E.; Lynch,
V. M.; Sessler, J. L.; Jeppesen J. O. J. Am. Chem. Soc. 2006, 128,
2444–2451; (b) Nielsen, K. A.; Sarova, G. H.; Martín-Gomis, L.;
Fernández-Lázaro, F.; Stein, P. C.; Sanguinet, L.; Levillain, E.;
Sessler, J. L.; Guldi, D. M.; Sastre-Santos, Á.; Jeppesen, J. O. J.
Am. Chem. Soc. 2008, 130, 460–462; (c) Park, J. S.; Le Derf, F.;
Bejger, C. M.; Lynch, V. M.; Sessler, J. L.; Nielsen, K. A.;
Johnsen, C.; Jeppesen, J. O. Chem. Eur. J. 2010, 16, 848–854.
10. (a) Balandier, J.-Y.; Chas, M.; Dron, P. I.; Goeb, S.; Canevet, D.;
Belyasmine, A.; Allain, M.; Sallé, M. J. Org. Chem. 2010, 75,
1589–1599; (b) Bivaud, S.; Balandier, J.-Y.; Chas, M.; Allain, M.;
Goeb, S.; Sa , M. J. Am. Chem. Soc. 2012, 134, 11968−11970.
11. Nielsen, K. A.; Jeppesen, J. O.; Levillain, E.; Thorup, N.; Becher,
J. Org. Lett. 2002, 4, 4189-4192.
12. For a review on 1,3,5-2,4,6-functionalized, facially segregated
benzene derivatives, see: Hennrich, G.; Anslyn, E. V. Chem. Eur.
J. 2002, 8, 2218–2224.
13. (a) Iverson, D. J.; Hunter, G.; Blount, J. F.; Damewood, J. R.;
Mislow, K. J. Am. Chem. Soc. 1981, 103, 6073–6083; (b) Wang,
X.; Hof, F. Beilstein J. Org. Chem. 2012, 8, 1–10.
14. (a) Stack, T. D. P.; Hou, Z.; Raymond, K. N. J. Am. Chem. Soc.
1993, 115, 6466–6467; (b) Kim, S.-G.; Ahn, K. H. Chem. Eur. J.
2000, 6, 3399–3403; (c) Chin, J.; Oh, J.; Jon, S. Y.; Park, S. H.;
Walsdorff, C.; Stranix, B.; Ghoussoub, A.; Lee, S. J.; Chung, H.
J.; Park, S.-M.; Kim, K. J. Am. Chem. Soc. 2002, 124, 5374–5379.
15. (a) Metzger, A.; Lynch, V. M.; Anslyn, E. V. Angew. Chem. Int.
Ed. Engl. 1997, 36, 862–864; (b) Ihm, H.; Yun, S.; Kim, H. G.;
Kim, J. K.; Kim K. S. Org. Lett. 2002, 4, 2897–2900. (c) Wallace,
K. J.; Belcher, W. J.; Turner, D. R.; Syed, K. F.; Steed, J. W. J.
Am. Chem. Soc. 2003, 125, 9699–9715; (d) Swinburne, A. N.;
Paterson, M. J.; Fischer, K. H.; Dickson, S. J.; B. Wallace, E. V.;
Belcher, W. J.; Beeby, A.; Steed, J. W. Chem. Eur. J. 2010, 16,
1480–1492.
16. (a) Vacca, A.; Nativi, C.; Cacciarini, M.; Pergolo, R.; Roelens, S.
J. Am. Chem. Soc. 2004, 126, 16456–16465; (b) Nativi, C.;
Cacciarini, M.; Francesconi, O.; Vacca, A.; Moneti, G.; Ienco, A.;
Roelens, S. J. Am. Chem. Soc. 2007, 129, 4377-4385; (c) Mazik,
M.; Radunz, W.; Boese, R. J. Org. Chem. 2004, 69, 7448–7462.
17. Francesconi, O.; Ienco, A.; Moneti, G.; Nativi, C.; Roelens, S.
Angew. Chem. Int. Ed. 2006, 45, 6693–6696.
31. Schalley, C. A.; Verhaelen, C.; Klärner, F.-G.; Hahn, U.; Vögtle,
F. Angew. Chem. Int. Ed. 2005, 44, 477–480.
32. In this context the term ―hydrophobicity‖ describes the decreasing
ability of polar solvent molecules to "embed" (i.e., form a
solvation shell) ions with unpolar hydrocarbon chains of
increasing length. In ESI-MS, where polar and often protic
solvents are used, it is a common experience that ions with larger
unpolar residues show relatively higher ionisation efficiencies.
33. Monopyrrolo-TTF derivatives with two or more MPTTF moieties
have been reported to be good fullerene binders; see for example
ref. 9 or 10a.
34. Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R.
Int. J. Mass Spectrom. 2002, 216, 1–27.
18. Wright, A. T.; Griffin, M. J.; Zhong, Z.; McCleskey, S. C.;
Anslyn, E. V.; McDevitt J. T. Angew. Chem. Int. Ed. 2005, 44,
6375 –6378.
19. (a) Szabo, T.; O’Leary, B. M.; Rebek, J., Jr., Angew. Chem. Int.
Ed. 1998, 37, 3410–3413; (b) Horng, Y.-C.; Lin, T.-L.; Tu, C.-Y.;
Sung, T.-J.; Hsieh, C.-C.; Hu, C.-H.; Lee, H. M.; Kuo T.-S. Eur. J.
Org. Chem. 2009, 1511–1514.
20. De ’Anna, G. M.; Annunziata, R.; Benag ia, M.; Ce entano, G.;
Cozzi, F.; Francesconi, O.; Roelens S. Org. Biomol. Chem. 2009,
7, 3871–3877.
21. Receptor 1a: bright yellowcrystalline powder. M.p. 121125 °C.
Rf = 0.9 (CH2Cl2). 1H NMR (360 MHz, toluene-d6): δ 0.61 (t, 3J =
7.2 Hz, 9H), 0.77 (t, 3J = 7.2 Hz, 18H), 1.42 (sext, 3J = 7.2 Hz,
12H), 2.24 (q, 3J = 7.2 Hz, 6H), 2.48 (t, 3J = 7.2 Hz, 12H), 4.49 (s,
6H), 5.84 (s, 6H). 13C NMR (90 MHz, toluene-d6): δ 13.1, 15.2,
23.3, 23.5, 38.2, 47.4, 111.4, 111.9, 119.9, 120.2, 130.9, 145.7.
UV/Vis (CH2Cl2): λmax (ε) 290 nm (42300 L mol-1 cm-1), 327
(37000), 390 sh (3800), 450 sh (1000). MS (ESI+): m/z (%) 1371
(monoisotopic) (30) [M]+·, 685.5 (monoisotopic) (100) [M]2+.
HRMS (ESI+): m/z [M]+ Calcd. for C57H69N3S18+: 1371.04587;
ox2
Found 1371.04590. CV (vs. SCE, CH2Cl2): E1/2ox1 = 0.40 V, E1/2
= 0.81 V.