Journal of the American Chemical Society
Page 4 of 12
(5)
Bart, S. C.; Chirik, P. J. Selective, Catalytic Carbon−Carbon
Bond Activation and Functionalization Promoted by Late
1
Transition Metal Catalysts. J. Am. Chem. Soc. 2003, 125, 886–
887.
A distinction between “β-alkyl migration” and “β-alkyl elimina-
tion” has been made here. In both cases both the β-γC–C bond
is broken, however elimination results in two separate ligands
on the metal centre, where migration results in one contiguous
ligand.
2
3
4
5
6
7
8
9
(6)
(7)
(8)
Pfohl, W. Metallorganische Verbindungen, XXXVII Alumin-
ium-tri-neopentyl. Liebigs Ann. 1960, 629, 207–209.
Wendel, D.; Porzelt, A.; Herz, F. A. D.; Sarkar, D.; Jandl, C.;
Inoue, S.; Rieger, B. From Si(II) to Si(IV) and Back: Reversi-
ble Intramolecular Carbon–Carbon Bond Activation by an
Acyclic Iminosilylene. J. Am. Chem. Soc. 2017, 139, 8134–
8137.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Figure 5. Catalytic C–C bond hydrosilylation with 8.
(9)
Liu, L. L.; Zhou, J.; Cao, L. L.; Andrews, R.; Falconer, R. L.;
In summary, we report the C–C s-bond activation of strained
alkylidene cyclopropanes by main group reagents. Analysis of
the mechanism through isolation of intermediates, kinetics
and DFT studies shows that C–C s-bond activation at main
group centers is possible by either a- or b-migration mecha-
nisms. This understanding was used to develop a magnesium
catalysed hydrosilylation of C–C bonds. We are continuing to
expand the scope of this catalytic methodology and to explore
the origin of stereochemistry.
Russell, C. A.; Stephan, D. W.
A Transient Vi-
nylphosphinidene via a Phosphirene–Phosphinidene Rear-
rangement. J. Am. Chem. Soc. 2018, 140, 147–150.
Hicks, J.; Vasko, P.; Goicoechea, J. M.; Aldridge, S. Reversible,
Room-Temperature C—C Bond Activation of Benzene by an
Isolable Metal Complex. J. Am. Chem. Soc. 2019, 141, 11000–
11003.
(10)
(11)
(12)
Koshino, K.; Kinjo, R. Construction of σ-Aromatic AlB2 Ring
via Borane Coupling with
a Dicoordinate Cyclic (Al-
kyl)(Amino)Aluminyl Anion. J. Am. Chem. Soc. 2020, 142,
9057–9062.
ASSOCIATED CONTENT
Roy, A.; Bonetti, V.; Wang, G.; Wu, Q.; Klare, H. F. T.; Oes-
treich, M. Silylium-Ion-Promoted Ring-Opening Hydrosilyla-
tion and Disilylation of Unactivated Cyclopropanes. Org. Lett.
2020, 22, 1213–1216.
Morton, J. G. M.; Dureen, M. A.; Stephan, D. W. Ring-Open-
ing of Cyclopropanes by “Frustrated Lewis Pairs.” Chem. Com-
mun. 2010, 46, 8947–8949.
Zhang, Z.-Y.; Liu, Z.-Y.; Guo, R.-T.; Zhao, Y.-Q.; Li, X.; Wang,
X.-C. B(C6F5)3-Catalyzed Ring Opening and Isomerization of
Unactivated Cyclopropanes. Angew. Chem., Int. Ed. 2017, 56,
4028–4032.
Cui, C.; Roesky, H. W.; Schmidt, H.-G.; Noltemeyer, M.; Hao,
H.; Cimpoesu, F. Synthesis and Structure of a Monomeric Alu-
minum(I) Compound [{HC(CMeNAr)2}Al] (Ar=2,6–
IPr2C6H3): A Stable Aluminum Analogue of a Carbene. Angew.
Chem., Int. Ed. 2000, 39, 4274–4276.
Zhong, M.; Sinhababu, S.; Roesky, H. W. The Unique β-
Diketiminate Ligand in Aluminum(I) and Gallium(I) Chem-
istry. Dalton Trans. 2020, 49, 1351–1364.
Bakewell, C.; Garçon, M.; Kong, R. Y.; O’Hare, L.; White, A. J.
P.; Crimmin, M. R. Reactions of an Aluminum(I) Reagent
with 1,2-, 1,3-, and 1,5-Dienes: Dearomatization, Reversibility,
and a Pericyclic Mechanism. Inorg. Chem. 2020, 59, 4608–
4616.
Bakewell, C.; White, A. J. P.; Crimmin, M. R. Reversible Alkene
Binding and Allylic C–H Activation with an Aluminium(I)
Complex. Chem. Sci. 2019, 10, 2452–2458.
Jain, S.; Vanka, K. The Unusual Role of Aromatic Solvent in
Single-Site AluminumI Chemistry: Insights from Theory.
Chem. Eur. J. 2017, 23, 13957–13963.
The Supporting Information is available free of charge on the
ACS Publications website. X-ray crystallographic data for3a, 4a-
c, 7a.DMAP2, 7b.DMAP2, and 9 are available from the Cam-
bridge Crystallographic Data Centre (CCDC 1984848-
1984854) and as a .cif file, full details of the experiments and cal-
culations are available as a .pdf . NMR spectra and computational
coordinates are available at DOI: 10.14469/hpc/7252.
(13)
(14)
Corresponding Author
(15)
Funding Sources
No competing financial interests have been declared.
(16)
(17)
ACKNOWLEDGMENT
We are grateful to the ERC (FluoroFix: 677367) for generous
funding. We thank Imperial College London for the award of a
President’s Scholarship (RYK).
REFERENCES
(1)
(2)
(3)
(4)
Souillart, L.; Cramer, N. Catalytic C–C Bond Activations via
Oxidative Addition to Transition Metals. Chem. Rev. 2015,
115, 9410–9464.
O’Reilly, M. E.; Dutta, S.; Veige, A. S. β-Alkyl Elimination:
Fundamental Principles and Some Applications. Chem. Rev.
2016, 116, 8105–8145.
Murakami, M.; Ishida, N. Potential of Metal-Catalyzed C–C
Single Bond Cleavage for Organic Synthesis. J. Am. Chem. Soc.
2016, 138, 13759–13769.
Sarpong, R.; Wang, B.; Perea, M. A. Transition Metal-Medi-
ated C–C Single Bond Cleavage: Making the Cut in Total Syn-
thesis. Angew. Chem., Int. Ed. DOI: 10.1002/anie.201915657
(18)
(19)
(20)
(21)
Green, S. P.; Jones, C.; Stasch, A. Stable Magnesium(I) Com-
pounds with Mg-Mg Bonds. Science 2007, 318, 1754–1757.
Bonyhady, S. J.; Jones, C.; Nembenna, S.; Stasch, A.; Edwards,
A. J.; McIntyre, G. J. β-Diketiminate-Stabilized Magnesium(I)
Dimers and Magnesium(II) Hydride Complexes: Synthesis,
ACS Paragon Plus Environment