S. Rostamnia, M. Amini/Chemical Papers 68 (6) 834–837 (2014)
837
vol.) afforded pure α-aminophosphonate IIIa (303 mg
Ohara, M., Nakamura, S.,
enantioselective three-component Kabachnik–Fields reac-
tion catalyzed by chiral bis(imidazoline)-zinc(II) catalysts.
&
Shibata, N. (2011). Direct
gum, 93 %). All products listed in Table 3 were known
and characterised by comparison of their physical and
spectral data with those already reported.
Advanced Synthesis
& Catalysis, 353, 3285–3289. DOI:
10.1002/adsc.201100482.
Ordó n˜ ez, M., Sayago, F. J., & Cativiela, C. (2012). Synthesis of
References
quaternary α-aminophosphonic acids. Tetrahedron, 68, 6369–
6412. DOI: 10.1016/j.tet.2012.05.008.
Azizi, N., & Saidi, M. R. (2003). Synthesis of tertiary α-amino
phosphonate by one-pot three-component coupling mediated
by LPDE. Tetrahedron, 59, 5329–5332. DOI: 10.1016/s0040-
Orsini, F., Sello, G., & Sisti, M. (2010). Aminophospho-
nic ccids and derivatives. Synthesis and biological appli-
cations. Current Medicinal Chemistry, 17, 264–289. DOI:
10.2174/092986710790149729.
4020(03)00759-2.
Beers, S. A., Schwender, C. F., Loughney, D. A., Malloy, E.,
Demarest, K., & Jordan, J. (1996). Phosphatase inhibitors
Ramalingam, S., & Kumar, P. (2008). Synthesis of α-amino-
phosphonates by three-component condensation of carbonyl
compound, amine, and dialkyl phosphite using yttria–
zirconia based Lewis acid catalyst. Catalysis Letters, 125,
315–319. DOI: 10.1007/s10562-008-9562-x.
–
III. Benzylaminophosphonic acids as potent inhibitors of
human prostatic acid phosphatase. Bioorganic & Medicinal
Chemistry, 4, 1693–1701. DOI: 10.1016/0968-0896(96)00186-
1
.
Ranu, B. C., & Hajra, A. (2002). A simple and green procedure
for the synthesis of α-aminophosphonate by a one-pot three-
component condensation of carbonyl compound, amine and
diethyl phosphite without solvent and catalyst. Green Chem-
istry, 4, 551–554. DOI: 10.1039/b205747f.
Rostamnia, S., & Lamei, K. (2003). A rapid, catalyst-free,
three-component synthesis of rhodanines in water using ul-
trasound. Synthesis, 2011, 3080–3082. DOI: 10.1055/s-0030-
1260158.
Rostamnia, S., & Zabardasti, A. (2003). SBA-15/TFE (SBA-
15/2,2,2-trifluoroethanol) as a suitable and effective metal-
free catalyst for the preparation of the tri- and tetra-
substituted imidazoles via one-pot multicomponent method.
Journal of Fluorine Chemistry, 144, 69–72. DOI: 10.1016/j.
jfluchem.2012.07.006.
Danila, D. C., Wang, X. Y, Hubble, H., Antipin, I. S.,
Pinkhassik, E. (2008). Increasing permeability of phos-
&
pholipid bilayer membranes to alanine with synthetic α-
aminophosphonate carriers. Bioorganic & Medicinal Chem-
istry Letters, 18, 2320–2323. DOI: 10.1016/j.bmcl.2008.02.
081.
Disale, S. T., Kale, S. R., Kahandal, S. S., Srinivasan, T. G.,
&
uid: An efficient and reusable catalyst for the solvent free
Kabachnik–Fields reaction. Tetrahedron Letters, 53, 2277–
Jayaram, R. V. (2012). Choline chloride·2ZnCl2 ionic liq-
2279. DOI: 10.1016/j.tetlet.2012.02.054.
Dupont, J., de Souza, R. F., & Suarez, P. A. Z. (2002). Ionic
liquid (molten salt) phase organometallic catalysis. Chemical
Reviews, 102, 3667–3692. DOI: 10.1021/cr010338r.
Fumino, K., Peppel, T., Roth, C., Geppert-Rybczynska, M.,
Zaitsau, D. H., Lehmann, J. K., Verevkin, S. P., K ¨o ckerling,
M., & Ludwig, R. (2011). The influence of hydrogen bond-
ing on the physical properties of ionic liquids. Physi-
cal Chemistry Chemical Physics, 13, 14064–14075. DOI:
Rostamnia, S. (2011). Eco-friendly supported nanoparticles as
a green approach. Research Journal of Chemistry and Envi-
ronment, 15, 89–91.
Rostamnia, S., Karimi, Z., & Ghavidel, M. (2012a). Cetyltri-
methylammonium bromide-surfactant aqueous micelles as a
green and ultra-rapid reactor for synthesis of 5-oxo-2-thioxo-
2,5-dihydro-3-thiophenecarboxylate derivatives. Journal of
Sulfur Chemistry, 33, 313–318. DOI: 10.1080/17415993.2012.
662980.
Rostamnia, S., Lamei, K., Mohammadquli, M., Sheykhan, M.,
& Heydari, A. (2012b). Nanomagnetically modified sulfu-
ric acid (γ-Fe2O3@SiO2-OSO3H): An efficient, fast and
reusable green catalyst for the Ugi-like Groebke–Blackburn–
Bienaymé three-component reaction under solvent-free con-
ditions. Tetrahedron Letters, 53, 5257–5260. DOI: 10.1016/j.
tetlet.2012.07.075.
Tibhe, G. D., Reyes-González, M. A., Cativiela, C., & Ordó n˜ ez,
M. (2012). Microwave-assisted high diastereoselective synthe-
sis of α-aminophosphonates under solvent and catalyst free-
conditions. Journal of the Mexican Chemical Society, 56,
183–187.
10.1039/c1cp20732f.
Gallardo-Macias, R., & Nakayama, K. (2010). Tin(II) com-
pounds as catalysts for the Kabachnik–Fields reaction under
solvent-free conditions: Facile synthesis of α-aminophospho-
nates. Synthesis, 2010, 57–62. DOI: 10.1055/s-0029-1217091.
Gordon, C. M. (2001). New developments in catalysis using
ionic liquids. Applied Catalysis A: General, 222, 101–117.
DOI: 10.1016/s0926-860x(01)00834-1.
Mandhane, P. G., Joshi, R. S., Nagargoje, D. R., & Gill, C.
H. (2011). Thiamine hydrochloride (VB1): An efficient cata-
lyst for one-pot synthesis of α-aminophosphonates under ul-
trasonic irradiation. Chinese Chemical Letters, 22, 563–566.
DOI: 10.1016/j.cclet.2010.11.021.
Niralwad, K. S., Shingate, B. B., & Shingare, M. S. (2010).
Solvent-free sonochemical preparation of α-aminophospho-
nates catalyzed by 1-hexanesulphonic acid sodium salt.
Ultrasonics Sonochemistry, 17, 760–763. DOI: 10.1016/j.
ultsonch.2010.02.002.
Pratt, R. F. (1989). Inhibition of a class C beta-lactamase by a
specific phosphonate monoester. Science, 246, 917–919. DOI:
10.1126/science.2814513.