Communication
ChemComm
10, 3793; (c) L. Dong-Hwan, H. Qiu, M.-h. Cho, I.-M. Lee and
M.-J. Jin, Synlett, 2008, 1657; (d) Y. Liang, Y.-X. Xie and J.-H. Li,
J. Org. Chem., 2006, 71, 379; (e) V. K. Kanuru, S. M. Humphrey,
J. M. W. Kyffin, D. A. Jefferson, J. W. Burton, M. Armbru¨ster and
R. M. Lambert, Dalton Trans., 2009, 7602.
4 (a) P. Appukkuttan, W. Dehaen and E. Van der Eycken, Eur. J. Org. Chem.,
2003, 4713; (b) N. E. Leadbeater, M. Marco and B. J. Tominack, Org. Lett.,
2003, 5, 3919; (c) M. S. Maji, S. Murarka and A. Studer, Org. Lett., 2010,
12, 3878.
5 O. Vechorkin, D. Barmaz, V. Proust and X. Hu, J. Am. Chem. Soc.,
2009, 131, 12078.
6 M. Shang, H.-L. Wang, S.-Z. Sun, H.-X. Dai and J.-Q. Yu, J. Am. Chem.
Soc., 2014, 136, 11590.
7 (a) I. V. Seregin, V. Ryabova and V. Gevorgyan, J. Am. Chem. Soc.,
2007, 129, 7742; (b) A. S. Dudnik and V. Gevorgyan, Angew. Chem.,
Int. Ed., 2010, 49, 2096; (c) M. Tobisu, Y. Ano and N. Chatani, Org.
Lett., 2009, 11, 3250.
8 (a) C. Feng and T.-P. Loh, Angew. Chem., Int. Ed., 2014, 53, 2722;
(b) F. Xie, Z. Qi, S. Yu and X. Li, J. Am. Chem. Soc., 2014, 136, 4780.
9 (a) L. Wang, W. He and Z. Yu, Chem. Soc. Rev., 2013, 42, 599;
(b) S. Otsuka, K. Nogi and H. Yorimitsu, Top. Curr. Chem., 2018, 376.
10 (a) L. S. Liebeskind and J. Srogl, J. Am. Chem. Soc., 2000, 122, 11260;
steps. We were pleased to discover that the use of differing alkynes
for each step was also easily achieved. A range of alkynes was
employed, generating hydroacylation-Sonogashira products 9b–g.
Compound 9g, in particular, contains synthetic handles for further
functionalisation on each of the constituent components, which
would be extremely difficult to prepare using Pd- or Ni-catalyzed
methods.
Further reaction sequences, generating increasingly complex
products were subsequently attempted, as depicted in Scheme 6.
By employing suitably protected propargyl amines as substrates
for the first step in the hydroacylation-Sonogashira sequence,19
a
three-step, two-pot synthesis of highly functionalised pyrrole 11
was achieved in a good yield, requiring only a single chromato-
graphic purification to obtain the pure heterocycle. An alternative
sequence resulted in the combination of the hydroacylation-
Sonagashira steps with a p-acid-catalysed [4+2]-cycloaddition
reaction between an isochromenylium ion and a styrene derivate,
ultimately yielding 1,2-dihydronaphthylene 13 after subsequent
´
(b) H. Prokopcova and C. O. Kappe, Angew. Chem., Int. Ed., 2009,
48, 2276.
ring opening of the bicyclic intermediate. Such processes have 11 (a) A. Aguilar-Aguilar and E. Pen˜a-Cabrera, Org. Lett., 2007, 9, 4163;
(b) C. Kusturin, L. S. Liebeskind, H. Rahman, K. Sample, B. Schweitzer,
J. Srogl and W. L. Neumann, Org. Lett., 2003, 5, 4349; (c) A. Tikad,
S. Routier, M. Akssira, J.-M. Leger, C. Jarry and G. Guillaumet, Org. Lett.,
been effected by a number of p-acids, and the conditions used
herein were first reported by Yamamoto et al. in 2003.20
In conclusion, we have developed a novel Sonogashira-type
coupling between arylmethylsulfides and terminal alkynes. Utilizing
an electrophilic Rh–bisphosphine catalyst system, the reaction
has been shown to exhibit tolerance to a broad range of
functional groups, many of which would not be tolerated under
alternative TM-catalysis. This selectivity has been demonstrated
in the orthogonal activation of either a C–S bond or C–X bond by
either Rh or Pd respectively. In addition, the reactions reported here
show how divergent reactivity for the same reaction components
can be achieved by catalyst and reagent selection, with Sonogashira
and not carbothiolation products being obtained.
2007, 9, 4673; (d) V. P. Mehta, A. Sharma, K. Van Hecke, L. Van Meervelt
and E. Van der Eycken, J. Org. Chem., 2008, 73, 2382; (e) N. Kaval,
B. K. Singh, D. S. Ermolat’ev, S. Claerhout, V. S. Parmar, J. Van der Eycken
and E. Van der Eycken, J. Comb. Chem., 2007, 9, 446.
12 (a) V. P. Mehta, A. Sharma and E. Van der Eycken, Org. Lett., 2008,
10, 1147; (b) Z.-Y. Tian, S.-M. Wang, S.-J. Jia, H.-X. Song and
C.-P. Zhang, Org. Lett., 2017, 19, 5454.
13 A. Baralle, H. Yorimitsu and A. Osuka, Chem. – Eur. J., 2016, 22, 10768.
14 (a) L. Melzig, J. Stemper and P. Knochel, Synthesis, 2010, 2085;
(b) C. Savarin, J. Srogl and L. S. Liebeskind, Org. Lett., 2001, 3, 91.
´
´
15 (a) J. F. Hooper, A. B. Chaplin, C. Gonzalez-Rodrıguez, A. L. Thompson,
A. S. Weller and M. C. Willis, J. Am. Chem. Soc., 2012, 134, 2906;
(b) M. Arambasic, J. F. Hooper and M. C. Willis, Org. Lett., 2013, 15, 5162.
16 J. F. Hooper, R. D. Young, A. S. Weller and M. C. Willis, Chem. – Eur. J.,
2013, 19, 3125.
17 J. F. Hooper, R. D. Young, I. Pernik, A. S. Weller and M. C. Willis,
Chem. Sci., 2013, 4, 1568.
18 (a) A. B. Chaplin, J. F. Hooper, A. S. Weller and M. C. Willis, J. Am.
Conflicts of interest
´
Chem. Soc., 2012, 134, 4885; (b) T. J. Coxon, M. Fernandez, J. Barwick-
There are no conflicts to declare.
Silk, A. I. McKay, L. E. Britton, A. S. Weller and M. C. Willis, J. Am.
Chem. Soc., 2017, 139, 10142; (c) R. N. Straker, M. K. Majhail and
M. C. Willis, Chem. Sci., 2017, 8, 7963; (d) R. N. Straker, M. Formica,
J. D. Lupton, J. Niu and M. C. Willis, Tetrahedron, 2018, 74, 5408;
(e) M. Castaing, S. L. Wason, B. Estepa, J. F. Hooper and M. C. Willis,
Angew. Chem., Int. Ed., 2013, 52, 13280.
Notes and references
1 (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 16, 4467; (b) L. Cassar, J. Organomet. Chem., 1975, 93, 253;
(c) H. A. Dieck and F. R. Heck, J. Organomet. Chem., 1975, 93, 259.
19 M. K. Majhail, P. M. Ylioja and M. C. Willis, Chem. – Eur. J., 2016,
22, 7879.
´
2 R. Chinchilla and C. Najera, Chem. Rev., 2007, 107, 874.
¨
3 (a) V. P. W. Bohm and W. A. Hermmann, Eur. J. Org. Chem., 2000, 20 N. Asao, T. Kasahara and Y. Yamamoto, Angew. Chem., Int. Ed., 2003,
3679; (b) B. H. Lipshutz, D. W. Chung and B. Rich, Org. Lett., 2008,
42, 3504.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019