ORGANIC
LETTERS
2013
Vol. 15, No. 24
6250–6253
Tri- and Tetrasubstituted Functionalized
Vinyl Sulfides by Radical Allylation
ꢀ
Laurent Debien, Marie-Gabrielle Braun, Beatrice Quiclet-Sire, and Samir Z. Zard*
ꢁ
Laboratoire de Synthese Organique, CNRS UMR 7652 Ecole Polytechnique,
91128 Palaiseau Cedex, France
Received October 29, 2013
ABSTRACT
2-Fluoropyridinyl-6-oxy- precursors derived from phenyl vinyl sulfide react with radicals generated from xanthates via an additionꢀelimination
process to furnish the corresponding vinyl sulfides in good yields. This convergent method is operationally simple and enables a straightforward
synthesis of the difficult to access tetrasubstituted vinyl sulfides. Vinyl sulfides were used as more robust enol ether surrogates in highly
stereoselective reactions with N-acylium cations leading to nitrogen-containing polycyclic structures.
Vinyl sulfides are versatile building blocks that have
been widely used asmore robust surrogates for enol ethers1
in reactions involving thionium ions,2 in cycloadditions,3
or in carbometalation processes.4 This structural motif has
also found applications in material science5 and is featured
in some biologically active compounds.6 Not unexpect-
edly, vinyl sulfides have attracted continuing interest from
the synthetic community, and a variety of methods have
been reported for their preparation. The main approaches
include the free radical,7 base,8 or metal9 mediated hydro-
thiolation of alkynes, the cross-coupling10 of thiols with
functionalized vinylic reagents, and the reaction of unsa-
turated compounds with electrophilic sulfur reagents.11
(1) See, for example: (a) Garst, M. E.; Spencer, T. A. J. Am. Chem.
Soc. 1973, 95, 250. (b) Sasmal, P. K.; Maier, M. E. Org. Lett. 2002, 4,
1271. (c) Sasmal, P. K.; Maier, M. E. J. Org. Chem. 2003, 68, 824. For
applications in total synthesis, see: (d) Bratz, M.; Bullock, W. H.;
Overman, L. E.; Takemoto, T. J. Am. Chem. Soc. 1995, 117, 5958. (e)
Paquette, L. A.; Sun, L.-Q.; Watson, T. J. N.; Friedrich, D.; Freeman,
B. T. J. Org. Chem. 1997, 62, 8155.
(2) For synthetic applications, see: (a) Schneebeli, S.; Kamenestka,
M.; Foss, F.; Vazquez, H.; Skouta, R.; Hybertsen, M.; Venkataraman,
L.; Breslow, R. Org. Lett. 2010, 12, 4114. (b) Cui, Y.; Floreancig, P. E.
Org. Lett. 2012, 14, 1720. (c) Trost, B. M.; Lavoie, A. C. J. Am. Chem.
Soc. 1983, 105, 5075.
(3) For selected examples, see: (a) Pearson, W. H.; Lee, I. Y.; Mi, Y.;
Stoy, P. J. Org. Chem. 2004, 69, 9109. (b) Kouznetsov, V. V. Tetrahedron
2009, 65, 2721. (c) Shaikh, A. K.; Cobb, A. J. A.; Varvounis, G. Org.
Lett. 2012, 14, 584. (d) Dittami, J. P.; Nie, X. Y.; Nie, H.; Ramanathan,
H.; Buntel, T.; Rigatti, S. J. Org. Chem. 1992, 57, 1151.
(4) (a) Krief, A.; Kenda, B.; Remacle, B. Tetrahedron Lett. 1995, 36,
7917. (b) Cohen, T.; Sherbine, J. P.; Mendelson, S. A.; Myers, M.
Tetrahedron Lett. 1985, 26, 2965. (c) Yamato, S.-y.; Yamamura, G.-H.;
Komatsu, M.; Arai, M.; Fukuyama, T.; Ryu, I. Org. Lett. 2005, 7, 2489.
(d) Trost, B. M.; Tanigawa, Y. J. Am. Chem. Soc. 1979, 101, 4743.
(5) (a) Abe, A. Macromolecules 1980, 13, 546. (b) Ahmed, E.; Kim,
F. S.; Xin, H.; Jeneke, S. A. Macromolecules 2009, 42, 8615. (c) Hoyle,
E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49, 1540.
(7) See, for example: (a) Ichinose, Y.; Wakamatsu, K.; Nozaki, K.;
Birbaum, J.-L. Chem. Lett. 1987, 1647. (b) Benati, L.; Capella, L.;
Montevecchi, P. C.; Spagnolo, P. J. Chem. Soc., Perkin Trans. 1 1995,
1035. (c) Lo Conte, M.; Pacifico, S.; Chambery, A.; Marra, A.; Dondoni,
A. J. Org. Chem. 2010, 75, 4644.
(8) For recent examples, see: (a) Waters, M. S.; Cowen, J. A.;
McWilliams, J. C.; Maligres, P. E.; Askin, D. Tetrahedron Lett. 2000,
41, 141. (b) Yu, A. H.; Qiu, R. H.; Tan, N. Y.; Peng, L. F.; Xu, X. H.
Chin. Chem. Lett. 2011, 22, 687. (c) Kondoh, A.; Takami, K.; Yorimitsu,
H.; Oshima, K. J. Org. Chem. 2005, 70, 6468.
(9) Many metals can trigger this transformation; for a review, see:
(a) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
ꢀ
See, also: (b) Di Giussepe, A.; Castarlenas, R.; Perez-Torrente, J. J.;
Crucianelli, M.; Polo, V.; Sancho, R.; Lahoz, F. J.; Oro, L. A. J. Am.
Chem. Soc. 2012, 134, 8171.
(10) For a recent review, see: (a) Beletskaya, I. P.; Ananikov, V. P.
Chem. Rev. 2011, 111, 1596. See, also: (b) Lin, Y.-Y.; Wang, Y.-J.; Lin,
C.-H.; Cheng, J.-H.; Lee, C.-F. J. Org. Chem. 2012, 77, 6100. (c) Kao,
H. L.; Lee, C. F. Org. Lett. 2011, 13, 5204.
(6) For selected examples, see: (a) Dvorak, C. A.; Schmitz, W. D.;
Poon, D. J.; Pryde, D. C.; Lawson, J. P.; Amos, R. A.; Meyers, A. I.
ꢀ
ꢀ
Angew. Chem., Int. Ed. 2000, 39, 1664. (b) Szilagyi, A.; Fenyvesi, F.;
ꢀ
ꢀ
ꢀ
ꢀ
Mayercsik, O.; Pelyvas, I. S.; Bacskay, I.; Feher, P.; Varadi, J.;
ꢀ
Vecsernyes, M.; Herczegh, P. J. Med. Chem. 2006, 49, 5626. (c) Sader,
H. S.; Johnson, D. M.; Jones, R. N. Antimicrob. Agents Chemother.
2004, 48, 53.
r
10.1021/ol403103u
Published on Web 11/23/2013
2013 American Chemical Society