Page 3 of 4
Biochemistry
2
4
inhibitor of TPI activity . PGA is a transition state analog of TPI
which is one atom shorter than the substrate. It binds tightly to the
protein due to its structural and charge similarities to the putative
cisꢀenediolateꢀlike transition state structure of the TPI catalytic
Funding Sources
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
SODC thanks the French National Research Agency (Agence
Nationale pour la Recherche) for the NADBIO contract (ANRꢀ
12ꢀBS07ꢀ0018ꢀ01) and acknowledges the partial financial support
from the ARCANE Labex (ANRꢀ11ꢀLABXꢀ0003ꢀ01). YC thanks
the ProFi Infrastructure (ANRꢀ10ꢀINBSꢀ08ꢀ01).
25
24
active site and provides good inhibition at 1 mM . First, we
checked that PGA inhibits NadA TPI activity. In the presence of 1
mM PGA, the TPI activity for both E. coli and T. maritima NadA
was reduced to 10% (Figure 1A). Commercial rabbit TPI was
inhibited by PGA to a similar extent (Figure 1A). Thus, PGA can
be used at 1 mM to significantly inhibit the TPI activity of NadA
and therefore should allow us to determine whether this enzyme
uses DHAP or Gꢀ3P to condense with IA. Using DHAP and IA as
substrates, QA production was unchanged with 1 mM PGA, while
it was slightly affected with 2 to 5 mM PGA (3% and 5%
reduction respectively) (Figure 1B). In contrast, when NadA was
mixed with Gꢀ3P and IA, a 60% drop in activity was observed in
the presence of 1 mM PGA (90% with 5 mM PGA). Similar
effects were observed with the thermophilic NadA enzyme (Fig.
S5 in SI). All these results show that if Gꢀ3P is not converted to
DHAP no QA can be produced, demonstrating that DHAP is the
triose which condenses with IA to generate QA. These results
raised the following question: how QA is produced from DHAP
and IA in the presence of PGA? In other words, is the same active
site used for TPI and quinolinate synthase activities? If two active
sites exist (AS1 and AS2), in AS1 (TPI active site) the PGA
molecule would block Gꢀ3P binding and isomerization into
DHAP, thus hindering QA formation in AS2. In contrast, DHAP,
even though it cannot be converted to Gꢀ3P at AS1, could react
directly with IA in AS2 to produce QA (Scheme S1ꢀA). In the
case of a single active site (AS) for both activities, PGA would
prevent all trioses binding and isomerization. However, the
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We thank M. Fontecave (Collège de France) for scientific
discussions.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
REFERENCES
(1) Frey, P.; Hegeman, A. D. (2007) Oxford University Press, Oxford.
(2) Belenky, P.; Bogan, K. L.; Brenner, C. (2007) Trends. Biochem. Sci.
3
2, 12ꢀ19.
(
(
3) Pollak, N.; Dolle, C.; Ziegler, M. (2007) Biochem. J. 402, 205ꢀ218.
4) Foster, J. W.; Moat, A. G. (1980) Microbiol. Rev. 44, 83ꢀ105.
(5) Begley, T. P.; Kinsland, C.; Mehl, R. A.; Osterman, A.; Dorrestein, P.
(2001) Vitam. Horm. 61, 103ꢀ119.
(6) Gerdes, S. Y.; Scholle, M. D.; D'Souza, M.; Bernal, A.; Baev, M. V.;
Farrell, M.; Kurnasov, O. V.; Daugherty, M. D.; Mseeh, F.; Polanuyer, B.
M.; Campbell, J. W.; Anantha, S.; Shatalin, K. Y.; Chowdhury, S. A.;
Fonstein, M. Y.; Osterman, A. L. (2002) J. Bacteriol. 184, 4555ꢀ4572.
(
7) Ollagnierꢀde Choudens, S.; Loiseau, L.; Sanakis, Y.; Barras, F.;
Fontecave, M. (2005) FEBS lett. 579, 3737ꢀ3743.
8) Cicchillo, R. M.; Tu, L.; Stromberg, J. A.; Hoffart, L. M.; Krebs, C.;
(
Booker, S. J. (2005) J. Am. Chem. Soc. 127, 7310ꢀ7311.
(9) Rousset, C.; Fontecave, M.; Ollagnier de Choudens, S. (2008) FEBS
Lett. 582, 2937ꢀ2944.
(10) Vey, J. L.; Drennan, C. L. (2011) Chem. Rev. 111, 2487ꢀ2506.
(11) Beinert, H.; Kennedy, M. C.; Stout, C. D. (1996) Chem. Rev. 96,
condensation product of DHAP with IA (Int ) could displace
A
2335ꢀ2335.
PGA to allow QA formation (Scheme S1ꢀB). This situation could
not occur with Gꢀ3P which does not condense with IA. Formation
of IntA from DHAP and IA is favored for two reasons: i)
condensation of DHAP with IA is thermodynamically favorable
with spontaneous release of inorganic phosphate and ii) some
(12) AhrensꢀBotzong, A.; Janthawornpong, K.; Wolny, J. A.; Tambou, E.
N.; Rohmer, M.; Krasutsky, S.; Poulter, C. D.; Schunemann, V.; Seemann,
M. (2011) Angew. Chem. Int. Ed. Engl. 50, 11976ꢀ11979.
(13) Chan, A.; Clemancey, M.; Mouesca, J. M.; Amara, P.; Hamelin, O.;
Latour, J. M.; Ollagnier de Choudens, S. (2012) Angew. Chem. Int. Ed.
Engl. 51, 7711ꢀ7714.
14,15
crystallographic data support early phosphate departure
. Inꢀ
(14) Cherrier, M. V.; Chan, A.; Darnault, C.; Reichmann, D.; Amara, P.;
deed, NadA 3Dꢀstructures show that there is no room in the active
site to accommodate a condensation product on which the phosꢀ
phate group from DHAP is still present.
Ollagnier de Choudens, S.; FontecillaꢀCamps, J. C. (2014) J. Am. Chem.
Soc. 136, 5253ꢀ5256.
(15) Sakuraba, H.; Tsuge, H.; Yoneda, K.; Katunuma, N.; Ohshima, T.
In conclusion, this study demonstrated for the first time that NadA
exhibits a TPI activity with similar properties to other TPI enꢀ
zymes. This activity was exploited to determine the mechanism
used by NadA to produce QA. The formal demonstration that
only DHAP reacts with IA to form QA discriminates between the
two proposed mechanisms in favor of mechanism (A) (Scheme
(
2005) J. Biol. Chem. 280, 26645ꢀ26648.
(16) Chandler, J. L.; Gholson, R. K. (1972) Biochem. Biophys. Acta. 264,
311ꢀ318.
(17) Nasu, S.; Wicks, F. D.; Gholson, R. K. (1982) J. Biol. Chem. 257,
626ꢀ632.
(
18) Suzuki, N.; Carlson, J.; Griffith, G.; Gholson, R. K. (1973) Biochim.
Biophys. Acta 304, 309ꢀ315.
19) Chandler, J. L.; Gholson, R. K.; Scott, T. A. (1970) Biochim.
Biophys. Acta 222, 523ꢀ526.
20) Krietsch, W. K.; Pentchev, P. G.; Klingenburg, H.; Hofstatter, T.;
Bucher, T. (1970) Eur. J. Biochem. 14, 289ꢀ300.
21) Straus, D.; Gilbert, W. (1985) Proc. Natl. Acad. Sci. U. S. A. 82,
1
), with early phosphate release, which is supported by crystalloꢀ
(
graphic data. This discovery paves the way for mechanistic
investigations of NadA, in particular to identify intermediates and
design inhibitors.
(
(
ASSOCIATED CONTENT
2014ꢀ2018.
(22) Haley, R.; Fruchtl, M.; Brune, E. M.; Ataai, M.; Henry, R.; Beitle, R.
Supporting Information
(2014) J. Biotechnol. 188, 48ꢀ52.
(23) Lambeir, A. M.; Opperdoes, F. R.; Wierenga, R. K. (1987) Eur. J.
Material and methods and additional figures. This material is
available free of charge via the Internet at http://pubs.acs.org.
Biochem. 168, 69ꢀ74.
24) Wolfenden, R. (1969) Nature, 223, 704ꢀ705.
(
(25) Wierenga, R. K.; Kapetaniou, E. G.; Venkatesan, R. (2010) Cell.
Mol. Life Sci. 67, 3961ꢀ3982.
AUTHOR INFORMATION
Corresponding Author
3
ACS Paragon Plus Environment