H.A. El-Boraey et al. / Spectrochimica Acta Part A 78 (2011) 360–370
369
Fig. 4. Dose response curves of HCT116 (ꢀ), MCF7 (ꢀ), HEPG2 (᭹) cells after treatment with the ligand (L) and complexes (1, 2).
cells are better than the values of 54–65 g/mL for the same cells
given by Cu(II) Schiff mono-base complexes with 2-thiophene-
carboaldehyde and dipropylenetriamine [19].
[4] R.M. Izatt, R.L. Bruening, B.J. Tarbet, L.D. Griffien, M.L. Bruening, K.E. Krakowiak,
J.S. Bradshaw, Pure Appl. Chem. 62 (1990) 1115–1118.
[5] D.P. Singh, R. Kumar, J. Singh, Eur. J. Med. Chem. 44 (2009) 1731–1736.
[6] A. Chaudhary, R.V. Singh, Metal Based Drugs 8 (2002) 315–321.
[7] I. Dovinová, H. Pukíková, P. Rauko, L’.H. Ková, E. Hanusˇovská, E. Tibenská, Tox-
icology in Vitro 16 (2002) 491–498.
[8] S. Chandra, L.K. Gupta, Spectrochim. Acta Part A 60 (2004) 1563–1571.
[9] S. Chandra, L.K. Gupta, Spectrochim. Acta Part A 61 (2005) 2139–2144.
[10] M. Salavati-Niasari, J. Mol. Catal. A: Chem. 278 (2007) 22–28.
[11] V. Alexander, Chem. Rev. 95 (1995) 273–342.
[12] F. Denat, R. Tripier, F. Boschetti, E. Espinosa, R. Guilard, ARKIVOC (IV) (2006)
212–233.
The enhanced activity of the complex can be ascribed to some
factors. First is the increasing hydrogen bond ability of the com-
coordinated amide and amine groups; on average 0.44 vs. 0.41 e in
the complex and ligand, respectively. Second is the high stability
of LUMO in the complex shows a potential for oxidizing ability of
the complex compared to the ligand, Table 7. It has been reported
that some copper(II) complexes act on cancer cell through oxidative
stress mechanism [7,70].
[13] R. Tripier, O. Siri, F. Rabiet, F. Denat, R. Guilard, Tetrahedron Lett. 40 (1999)
79–82.
[14] J.S. Nowick, J.H. Tsai, Q.-C. Bui, S. Maitra, J. Am. Chem. Soc. 121 (1999)
8409–8410.
[15] C. Mcfarland, D.A. Vivic, A.V. Debnath, Synthesis 5 (2006) 807–812.
[16] H.M. Pinto, J.H. Schornagel (Eds.), Platinum and Other Metal Coordination Com-
pounds in Cancer Chemotherapy 2, Plenum, New York, 1996.
[17] H. Kozłowski, T. Kowalik-Jankowska, M. Jèzowska-Bojczuk, Coord. Chem. Rev.
249 (2005) 2323–2334.
[18] Y. Zhang, L. Zhang, L. Liu, J. Guo, D. Wu, G. Xu, X. Wang, D. Jia, Inorg. Chim. Acta
363 (2010) 289–293.
[19] A.Th. Caviara, P.J. Cox, K.H. Repana, A.A. Pantazaki, K.T. Papazisis, A.H. Kortsaris,
D.A. Kyriakidis, G.St. Nikolov, C.A. bolos, J. Inorg. Biochem. 99 (2005) 467–476.
[20] M.P. Sathisha, U.N. Shetti, V.K. Revankar, K.S.R. Pai, Eur. J. Med. Chem. 43 (2008)
2338–2346.
4. Conclusions
In this work, synthesis and characterization of a novel macro-
cyclic ligand and its copper(II) complexes (1–4) are reported. The
analytical and physicochemical analysis confirmed the composi-
tion and the structure of the newly obtained compounds. The
results obtained can be summarized as follows:
[21] M. Collins, D. Ewing, G. Mackenzie, E. Sinn, U. Sandbhor, S. Padhye, S. Padhye,
Inorg. Chem. Commun. 3 (2000) 453–457.
[22] N.H. Gokhale, S.S. Padhye, S.B. Padhye, C.E. Anson, A.K. Powell, Inorg. Chim. Acta
319 (2001) 90–94.
1. The new macrocyclic compound behaves as a neutral tetraden-
tate ligand when reacts with different Cu(II) salts.
2. Mononuclear complexes are formed. They adopt distorted
square pyramidal configurations with the chloride, bromide, and
nitrate. However, the acetato complex prefers a distorted octa-
hedral geometry.
3. Quantum chemical calculations support the experimental char-
acterization of the structures of the ligand and complexes.
4. The pharmacological results suggest that the novel ligand and
its copper(II) complexes are potent anticancer agents. Besides,
the cytotoxicity of copper complexes is higher than that of the
ligand, which implies an increase in the antitumor activity with
coordination.
[23] R.-M. Wang, N.-P. He, P.-F. Song, Y.-F. He, L. Ding, Z.-Q. Lei, Polym. Adv. Technol.
20 (2009) 959–964.
[24] K.G. Daniel, D. Chen, S. Orlu, Q.C. Cui, F.R. Miller, Q.P. Dou, Breast Cancer Res. 7
(2005) R897–R908.
[25] P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T. Warren,
H. Bokesch, S. Kenney, M.R. Boyd, J. Natl. Cancer Inst. 82 (1990) 1107–1112.
[26] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese-
man, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S.
Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A.
Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P.
Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Strat-
mann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich,
A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari,
J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Ste-
fanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith,
M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. John-
son, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revisions C.02
and D.02, Gaussian, Inc., Wallingford, CT, 2004.
Acknowledgments
We would like to thank Professor Kimihiko Hirao (Riken, Wako,
Japan) and Professor Tetsuya Taketsugu (Hokkaido University, Sap-
poro, Japan) for allocation of some computational facilities.
[27] A.D. Becke, J. Chem. Phys 98 (1993) 5648–5652.
[28] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
[29] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Phys. Chem. 98 (1994)
11623–11627.
[30] G.A. Zhurko, D.A. Zhurko, ChemCraft version 1.5, 2005.
[31] A.E. Reed, R.B. Weinstock, F.A. Weinhold, J. Chem. Phys. 83 (1985) 735–746.
[32] S. Miertus, E. Scrocco, J. Tomasi, J. Chem. Phys. 55 (1981) 117–129.
[33] J. Tomasi, M. Persico, Chem. Rev. 94 (1994) 2027–2033.
[34] R. Cammi, J. Tomasi, J. Comput. Chem. 16 (1995) 1449–1458.
[35] M. Cossi, V. Barone, R. Cammi, J. Tomasi, J. Chem. Phys. Lett. 255 (1996) 327–333.
References
[1] E.F. Montero-Vázquez, F.J. Martínez-Martínez, I.I. Padilla-Martínez, M.A.
Carvajal-García, J.H. Hernández-Díaz, ARKOVIC (V) (2008) 276–282.
[2] M. Salavati-Niasari, F. Davar, K. Saberyan, Polyhedron 29 (2010) 2149–2156.
[3] S. Chandra, L.K. Gupta, D. Jain, Spectrochim. Acta Part A 60 (2004) 2411–2417.