Journal of Materials Chemistry A
Page 8 of 9
DOI: 10.1039/C5TA01134E
13. J. M. Mativetsky, M. Kastler, R. C. Savage, D. Gentilini, M. Palma,
W. Pisula, K. Müllen, and P. Samorì, Adv. Funct. Mater., 2009, 19,
2486–2494.
65 14. Z. Liu, C. Tonnelé, G. Battagliarin, C. Li, R. A. Gropeanu, T. Weil,
M. Surin, D. Beljonne, R. Lazzaroni, M. Debliquy, J.ꢀM. Renoirt, and
K. Müllen, J. Phys. Chem. B, 2014, 118, 309–314.
15. D. Görl, X. Zhang, and F. Würthner, Angew. Chem. Int. Ed., 2012,
51, 6328–6348.
70 16. A. Sarbu, L. Biniek, J.ꢀM. Guenet, P. J. Mésini, and M. Brinkmann,
Journal of Materials Chemistry C, 2015, 3, 1235–1242.
Conclusions
Our findings demonstrate that derivative 2 represents an optimal
trade off as it shows both a very large Stokes shift and a high
emission quantum yield. This compound represents a significant
entry in the field of luminescent materials for LSC and is a valid
alternative to the traditional Lumogen dyes for the fabrication of
larger area devices. Indeed, Figure 7d compares the estimated
total PL output as a function of the LSC size for slabs doped with
5
17. T. Ribeiro, S. Raja, A. S. Rodrigues, F. Fernandes, C. Baleizão, and
J. P. S. Farinha, Dyes and pigments, 2014, 110, 227–234.
18. S. FeryꢀForgues, Nanoscale, 2013, 5, 8428.
75 19. M. M. Sartin, C. Huang, A. S. Marshall, N. Makarov, S. Barlow, S.
R. Marder, and J. W. Perry, J Phys Chem A, 2014, 118, 110–121.
20. Z. An, S. A. Odom, R. F. Kelley, C. Huang, X. Zhang, S. Barlow, L.
A. Padilha, J. Fu, S. Webster, D. J. Hagan, E. W. Van Stryland, M. R.
Wasielewski, and S. R. Marder, J Phys Chem A, 2009, 113, 5585–
10 derivative 2 and with Lumogen f 240 orange. As expected, the
tendency of the total emitted light to saturate by increasing the
device dimensions is rather small for both LSC devices, whose
performances are indistinguishable within the experimental
uncertain even though derivative 2 luminescence quantum yield
15 is sizably smaller. The use of the latter is in any case
advantageous as its red shifted emission spectrum corresponds to
the region of maximum External Quantum Yield of silicon solar
cells.
80
5593.
21. X. Huang, Q. Shi, W.ꢀQ. Chen, C. Zhu, W. Zhou, Z. Zhao, X.ꢀM.
Duan, and X. Zhan, Macromolecules, 2010, 43, 9620–9626.
22. J. Fortage, M. Séverac, C. HouarnerꢀRassin, Y. Pellegrin, E. Blart,
and F. Odobel, J. Photoch. Photobio. A, 2008, 197, 156–169.
85 23. C. Li, A. Keerthi, Z. Liu, Y. Liu, J. Schöneboom, Q. Wang, F.
Eickemeyer, S. Valiyaveettil, N. G. Pschirer, P. Erk, A. Herrmann,
and K. Müllen, J. Mater. Chem., 2009, 19, 5405–5415.
Notes and references
24. T. Edvinsson, T. Edvinsson, C. Li, C. Li, N. Pschirer, N. Pschirer, J.
Schoneboom, J. Schoneboom, F. Eickemeyer, F. Eickemeyer, R.
20 a Department of Materials Science, Università di Milano-Bicocca, via
Cozzi 55, 20125, Milano, Italy E-mail: luca.beverina@unimib.it
b Polyera Corporation, 8045 Lamon Avenue, Suite 140 ,Skokie, IL 60077.
c Department of Chemistry and the Argonne-Northwestern Solar Energy
Research Center, Northwestern University, Evanston, Illinois, 60208 USA
25
90
Sens, R. Sens, G. Boschloo, G. Boschloo, A. Herrmann, A.
Herrmann, K. Mullen, K. Mullen, A. Hagfeldt, and A. Hagfeldt, J.
Phys. Chem. C, 2007, 111, 15137–15140.
25. L. Le Pleux, A. L. Smeigh, E. Gibson, Y. Pellegrin, E. Blart, G.
Boschloo, A. Hagfeldt, L. Hammarström, and F. Odobel, Energy
Environ. Sci., 2011, 4, 2075.
† Electronic Supplementary Information (ESI) available: Synthetic
procedures for the preparation of derivatives 1ꢀ4. Copy of the 1H and 13C
NMR for all new compounds. Details on computational investigation.
Details on electrochemical, UPS and time resolved emission
30 characterizations. Details on PMMA samples preparation. Details on the
photodegradation of derivative 1. See DOI: 10.1039/b000000x/
Authors gratefully acknowledge the financial support of “Fondazione
Cariplo” through grant 2010ꢀ0564 ‘‘Luminescent Solar Concentrators for
Building Integrated Photovoltaics – LumiPhoto’’.
95
26. E. Kozma and M. Catellani, Dyes and pigments, 2013, 98, 160–179.
27. C. Li and H. Wonneberger, Adv. Mater., 2012, 24, 613–636.
28. M. G. Debije and P. P. C. Verbunt, Adv. Energy Mater., 2012, 2, 12–
35.
100 29. W. G. J. H. M. van Sark, K. W. J. Barnham, L. H. Slooff, A. J.
Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D.
J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz,
M. Kennedy, T. Meyer, C. D. M. Donegá, A. Meijerink, and D.
Vanmaekelbergh, Opt. Express, 2008, 16, 21773–21792.
35
1. C. Huang, S. Barlow, and S. R. Marder, J. Org. Chem., 2011, 76,
2386–2407.
105 30. B. Rowan, L. Wilson, and B. Richards, IEEE J. Quantum. Elect.,
2008, 14, 1312–1322.
2. F. Würthner and M. Stolte, Chem. Commun., 2011, 47, 5109–5115.
3. X. Zhan, A. Facchetti, S. Barlow, T. J. Marks, M. A. Ratner, M. R.
31. H. HernandezꢀNoyola, D. Potterveld, R. Holt, and S. B. Darling,
Energy Environ. Sci., 2012, 5, 5798–5802.
40
Wasielewski, and S. R. Marder, Adv. Mater., 2011, 23, 268–284.
4. C. Liu, C. Xiao, Y. Li, W. Hu, Z. Li, and Z. Wang, Chem. Commun.,
2014, 50, 12462–12464.
5. T. Weil, T. Vosch, J. Hofkens, K. Peneva, and K. Müllen, Angew.
Chem. Int. Ed., 2010, 49, 9068–9093.
32. L. Beverina and A. Sanguineti, Solar Cell Nanotechnology, 2013,
110
115
120
125
130
317–356.
33. V. Fattori, M. Melucci, L. Ferrante, M. Zambianchi, I. Manet, W.
Oberhauser, G. Giambastiani, M. Frediani, G. Giachi, and N.
Camaioni, Energy Environ. Sci., 2011, 4, 2849–2853.
34. M. Melucci, M. Durso, L. Favaretto, M. L. Capobianco, V.
Benfenati, A. Sagnella, G. Ruani, M. Muccini, R. Zamboni, V.
Fattori, and N. Camaioni, RSC Adv., 2012, 2, 8610–8613.
35. J. C. Goldschmidt, M. Peters, A. Bösch, H. Helmers, F. Dimroth, S.
W. Glunz, and G. Willeke, Sol Energ Mat Sol C, 2009, 93, 176–182.
36. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo,
Science, 2008, 321, 226–228.
37. N. D. Boscher, P. Choquet, D. Duday, N. Kerbellec, J.ꢀC.
Lambrechts, and R. Maurau, J. Mater. Chem., 2011, 21, 18959–
18961.
38. R. H. Inman, G. V. Shcherbatyuk, D. Medvedko, A. Gopinathan, and
S. Ghosh, Opt. Express, 2011, 19, 24308–24313.
45 6. L. Ferlauto, F. Liscio, E. Orgiu, N. Masciocchi, A. Guagliardi, F.
Biscarini, P. Samorì, and S. Milita, Adv. Funct. Mater., 2014, 24,
5503–5510.
7. K. Trofymchuk, A. Reisch, I. Shulov, Y. Mély, and A. S.
Klymchenko, Nanoscale, 2014, 6, 12934–12942.
50 8. R. C. Savage, E. Orgiu, J. M. Mativetsky, W. Pisula, T. Schnitzler, C.
L. Eversloh, C. Li, K. Müllen, and P. Samorì, Nanoscale, 2012, 4,
2387.
9. G. Griffini, L. Brambilla, M. Levi, M. Del Zoppo, and S. Turri, Sol
Energ Mat Sol C, 2013, 111, 41–48.
55 10. J. E. Anthony, A. Facchetti, M. Heeney, S. R. Marder, and X. Zhan,
Adv. Mater., 2010, 22, 3876–3892.
11. L. Cerdán, A. Costela, G. DuránꢀSampedro, I. GarcíaꢀMoreno, M.
Calle, M. JuanꢀyꢀSeva, J. de Abajo, and G. A. Turnbull, J. Mater.
Chem., 2012, 22, 8938–8947.
39. V. M. Agranovich, Y. N. Gartstein, and M. Litinskaya, Chem. Rev.,
2011, 111, 5179–5214.
40. L. Slooff, E. Bende, A. Burgers, T. Budel, M. Pravettoni, R. Kenny,
E. Dunlop, and A. Büchtemann, physica status solidi (RRL)-Rapid
Research Letters, 2008, 2, 257–259.
60 12. P.ꢀO. Schwartz, L. Biniek, E. Zaborova, B. Heinrich, M. Brinkmann,
N. Leclerc, and S. Méry, J. Am. Chem. Soc., 2014, 136, 5981–5992.
8
| Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]