ChemComm
Communication
through the activation of the carbon–carbon triple bond.
The detailed study of this catalytic reaction is now ongoing in
our laboratory and will be reported elsewhere.
We are grateful for the financial support from the Russian
Science Foundation (RSF grant 14-13-00801). X-ray studies were
supported by the RUDN University Program 5-100.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
2
A. A. Mohamed, Coord. Chem. Rev., 2010, 254, 1918.
A. A. Titov, O. A. Filippov, L. M. Epstein, N. V. Belkova and E. S. Shubina,
Inorg. Chim. Acta, 2018, 470, 22.
3
4
H. V. Rasika Dias, S. Singh and C. F. Campana, Inorg. Chem., 2008,
47, 3943.
V. N. Tsupreva, O. A. Filippov, A. A. Titov, A. I. Krylova, I. B. Sivaev,
V. I. Bregadze, L. M. Epstein and E. S. Shubina, J. Organomet. Chem.,
2
009, 694, 1704.
5
6
7
V. N. Tsupreva, A. A. Titov, O. A. Filippov, A. N. Bilyachenko, A. F.
Smol’yakov, F. M. Dolgushin, D. V. Agapkin, I. A. Godovikov, L. M.
Epstein and E. S. Shubina, Inorg. Chem., 2011, 50, 3325.
A. A. Titov, O. A. Filippov, A. N. Bilyachenko, A. F. Smol’yakov, F. M.
Dolgushin, V. K. Belsky, I. A. Godovikov, L. M. Epstein and E. S.
Shubina, Eur. J. Inorg. Chem., 2012, 5554.
Scheme 1 Alkyne–azide cycloaddition catalyzed by trinuclear copper(I)
3
pyrazolate complex [CuL] .
Next, we tested the ability of the trinuclear copper(I)
pyrazolate complex to catalyze the alkyne–azide cycloaddition
through the activation of the triple bond of acetylenes. After
addition of one equivalent of ortho-fluorobenzyl azide 5 to
P.-C. Duan, Z.-Y. Wang, J.-H. Chen, G. Yang and R. G. Raptis, Dalton
Trans., 2013, 42, 14951.
8 A. A. Titov, E. A. Guseva, A. F. Smol’yakov, F. M. Dolgushin, O. A.
Filippov, I. E. Golub, A. I. Krylova, G. M. Babakhina, L. M. Epstein
and E. S. Shubina, Russ. Chem. Bull., 2013, 62, 1829.
9 O. A. Filippov, A. A. Titov, E. A. Guseva, D. A. Loginov, A. F. Smol’yakov,
F. M. Dolgushin, N. V. Belkova, L. M. Epstein and E. S. Shubina, Chem. –
Eur. J., 2015, 21, 13176.
a 1 : 1 mixture of [CuL]3 and phenylacetylene 2 in CD Cl
2
2
at room temperature in air, we observed the formation of
,4-substituted 1,2,3-triazole in a quantitative yield by NMR
spectroscopy (Scheme 1a) (see Fig. S11 in the ESI†). The click
1
1
0 N. B. Jayaratna, C. V. Hettiarachchi, M. Yousufuddin and H. V.
Rasika Dias, New J. Chem., 2015, 39, 5092.
reaction between 1-octyne 1 or phenylacetylene 2 and azide 5 11 A. A. Titov, E. A. Guseva, O. A. Filippov, G. M. Babakhina, I. A.
Godovikov, N. V. Belkova, L. M. Epstein and E. S. Shubina, J. Phys.
3
takes place also in the presence of only 1 mol% of [CuL] ,
Chem. A, 2016, 120, 7030.
2 N. B. Jayaratna, M. M. Olmstead, B. I. Kharisov and H. V. Rasika
Dias, Inorg. Chem., 2016, 55, 8277.
3 A. A. Titov, A. F. Smol’yakov, O. A. Filippov, I. A. Godovikov, D. A.
Muratov, F. M. Dolgushin, L. M. Epstein and E. S. Shubina, Cryst.
Growth Des., 2017, 17, 6770.
yielding triazoles 6 and 7 in quantitative yields (Scheme 1b).
Noteworthy are the especially mild conditions under which the
reaction proceeds: no inert gas atmosphere, base, or heating is
required. In addition, we investigated the cycloaddition of phenyl-
1
1
acetylene 2 with azide 5 in the presence of 1 mol% of crystals of 14 J.-P. Zhang, Y.-B. Zhang, J.-B. Lin and X.-M. Chen, Chem. Rev., 2011,
1
12, 1001.
complex 3 (the structure was proved by XRD and solid state IR
spectroscopy). The obtained results are in a good agreement with
1
5 H. V. Rasika Dias, H. V. K. Diyabalanage, M. A. Rawashdeh-Omary,
M. A. Franzman and M. A. Omary, J. Am. Chem. Soc., 2003, 125, 12072.
the reaction shown in Scheme 1b. This experiment, most likely, 16 H. V. Rasika Dias, H. V. K. Diyabalanage, M. G. Eldabaja, O. Elbjeirami,
M. A. Rawashdeh-Omary and M. A. Omary, J. Am. Chem. Soc., 2005,
proves the nature of the key catalytic particle. This feature shows
127, 7489.
the potential of the trinuclear copper(I) pyrazolate complex as an
efficient catalyst not only for alkyne–azide cycloaddition but also
for other copper(I) catalyzed transformations.
1
7 M. A. Omary, M. A. Rawashdeh-Omary, M. W. A. Gonser, O. Elbjeirami,
T. Grimes, T. R. Cundari, H. V. K. Diyabalanage, C. S. P. Gamage and
H. V. Rasika Dias, Inorg. Chem., 2005, 44, 8200.
8 K. Fujisawa, Y. Ishikawa, Y. Miyashita and K.-I. Okamoto, Inorg.
Chim. Acta, 2010, 363, 2977.
1
In summary, we demonstrated for the first time the ability of
the trinuclear copper(I) pyrazolate complex to coordinate the 19 C. V. Hettiarachchi, M. A. Rawashdeh-Omary, D. Korir, J. Kohistani,
M. Yousufuddin and H. V. Rasika Dias, Inorg. Chem., 2013, 52, 13576.
0 Q. Xiao, J. Zheng, M. Li, S.-Z. Zhan, J.-H. Wang and D. Li, Inorg.
Chem., 2014, 53, 11604.
carbon–carbon triple bond of acetylenes via p-electron bond-
ing. Interestingly, there is no interaction with the phenyl ring of
2
phenylacetylene in solution despite the well-known affinity of 21 A. A. Titov, O. A. Filippov, E. A. Guseva, A. F. Smol’yakov, F. M.
Dolgushin, L. M. Epstein, V. K. Belsky and E. S. Shubina, RSC Adv.,
trinuclear copper pyrazolates to arenes. No elimination of the
acidic proton occurs during the interaction of the copper(I)
2014, 4, 8350.
2
2 S.-Z. Zhan, M. Li, J. Zheng, Q.-J. Wang, S. W. Ng and D. Li, Inorg. Chem.,
2017, 56, 13446.
23 S.-Z. Zhan, X. Jiang, J. Zheng, X.-D. Huang, G.-H. Chen and D. Li,
Dalton Trans., 2018, 47, 3679.
4 A. Maspero, S. Brenna, S. Galli and A. Penoni, J. Organomet. Chem.,
pyrazolate with 1-octyne and phenylacetylene, but the macro-
2
cycle rearranges into bicyclic ‘‘spiro’’ Cu
3
Pz
4
(Z -alkyne)
2
com-
plexes (3 and 4). Moreover, the trinuclear copper(I) pyrazolate
2
complex appeared to catalyze the alkyne–azide cycloaddition
2003, 672, 123.
2
92 | Chem. Commun., 2019, 55, 290--293
This journal is ©The Royal Society of Chemistry 2019