10.1002/chem.202005035
Chemistry - A European Journal
COMMUNICATION
Institute MSP and Peptide Technologies facilities. V.T.
acknowledges the award of a Norma Hilda Schuster Scholarship.
Keywords: ring expansion • thioamides • imides • acyl transfer •
ring insertion
(1)
(2)
(3)
White, C. J.; Yudin, A. K. Nat. Chem. 2011, 3, 509–524.
Gallia, C.; Mandolini, L. Eur. J. Org. Chem. 2000, 3117–3125.
De Leon Rodriguez, L. M.; Weidkamp, A. J.; Brimble, M. A. Org. Biomol.
Chem. 2015, 13, 6906–6921.
(4)
(5)
Ramakrishnan, C.; Paul, P. K. C.; Ramnarayan, K. Proc. Int. Symp.
Biomol. Struct, Interactions, Suppl. J. Biosci., 1985, 8, 239–251.
Hosseinzadeh, P.; Bhardwaj, G.; Mulligan, V. K.; Shortridge, M. D.;
Craven, T. W.; Pardo-Avila, F.; Rettie, S. A.; Kim, D. E.; Silva, D.-A.;
Ibrahim, Y. M.; Webb, I. K.; Cort, J. R.; Adkins, J. N.; Varani, G.; Baker,
D. Science 2017, 358, 1461–1466.
Figure 3: Conversion of cyclic thiopeptide 24 to ring expanded product 28 via
intermediate 27.
(6)
(7)
Puentes, A. R.; Morejón, M. C.; Rivera, D. G.; Wessjohann, L. A. Org.
Lett. 2017, 19, 4022–4025.
Malins, L. R.; deGruyter, J. N.; Robbins, K. J.; Scola, P. M.; Eastgate, M.
D.; Ghadiri, M. R.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 5233–
5241.
To explore the scope of this ring expansion methodology
variation of the ring size and inserted amino acid were varied.
Cyclic hexa-, hepta- and octa-peptides all underwent ring
expansion to the corresponding cyclic hepta-, octa- and nona-
peptides. Examples of insertion of both glycine and alanine
residues were demonstrated, and at different sequence insertion
points, typically in good yield (Scheme 3). No evidence for
epimerization was observed. In general, insertion of alanine
proceeded in slightly lower yield than for glycine, consistent with
observations by Unsworth.17-19 One example proceeded in low
yield, with the major product being the cyclic peptide oxoamide.
This single example was the insertion of an alanine residue into
an Ala–Phe thioamide in cyclic heptapeptide 25 to generate 31,
with a combination of sequence, steric and conformational effects
presumably contributing to the low yield in this case.
(8)
(9)
Ahmed, M. I.; Harper, J. B.; Hunter, L. Org. Biomol. Chem. 2014, 12,
4598.
Appavoo, S. D.; Huh, S.; Diaz, D. B.; Yudin, A. K. Chem. Rev. 2019, 119,
9724–9752.
(10) Thombare, V. J.; Hutton, C. A. Angew. Chem. Int. Ed. 2019, 58, 4998–
5002.
(11) Wong, C. T. T.; Lam, H. Y.; Song, T.; Chen, G.; Li, X. Angew. Chem. Int.
Ed. 2013, 52, 10212–10215.
(12) Clarke, A. K.; Unsworth, W. P. Chem. Sci. 2020, 11, 2876–2881.
(13) Donald, J. R.; Unsworth, W. P. Chem. Eur. J. 2017, 23, 8780–8799.
(14) Horton, D. A.; Bourne, G. T.; Coughlan, J.; Kaiser, S. M.; Jacobs, C. M.;
Jones, A.; Rühmann, A.; Turner, J. Y.; Smythe, M. L. Org. Biomol. Chem.
2008, 6, 1386.
(15) Meutermans, W. D. F.; Bourne, G. T.; Golding, S. W.; Horton, D. A.;
Campitelli, M. R.; Craik, D.; Scanlon, M.; Smythe, M. L. Org. Lett. 2003,
5, 2711–2714.
In conclusion, we have demonstrated a novel Ag(I)-promoted
reaction of thiolactams to generate N-(a-aminoacyl)-lactams. A
subsequent acyl transfer process facilitates insertion of the a-
amino acid to generate a ring-expanded product. Application to
cyclic peptides facilitates a site-specific ring expansion process.
Ultimately, a single atom substitution (O–S) in a cyclic peptide
enables exploitation of the chemoselective reactivity of
thioamides to facilitate the site-selective insertion–ring expansion,
without necessitating protection of the remaining secondary
amide groups.
(16) Liskamp, R. M. J.; Rijkers, D. T. S.; Bakker, S. E. In Modern
Supramolecular Chemistry Strategies for Macrocycle Synthesis;
Diederich, F., Stang, P. J., Tykwinski, R. R., Eds.; Wiley-VCH Verlag
GmbH & Co. KGaA, 2008; pp 1–28.
(17) Baud, L. G.; Manning, M. A.; Arkless, H. L.; Stephens, T. C.; Unsworth,
W. P. Chem. Eur. J. 2017, 23, 2225–2230.
(18) Kitsiou, C.; Hindes, J. J.; I'Anson, P.; Jackson, P.; Wilson, T. C.; Daly, E.
K.; Felstead, H. R.; Hearnshaw, P.; Unsworth, W. P. Angew. Chem. Int.
Ed. Engl. 2015, 54, 15794–15798.
(19) Stephens, T. C.; Lodi, M.; Steer, A. M.; Lin, Y.; Gill, M. T.; Unsworth, W.
P. Chem. Eur. J. 2017, 23, 13314–13318.
(20) Lawer, A.; Epton, R. G.; Stephens, T. C.; Palate, K. Y.; Lodi, M.; Marotte,
E.; Lamb, K. J.; Sangha, J. K.; Lynam, J. M.; Unsworth, W. P. Chem. Eur.
J. 2020, 26, 12674–12683.
Conflict of Interest
(21) Stephens, T. C.; Unsworth, W. P. Synlett 2020, 31, 133–146.
(22) Mendoza-Sanchez, R.; Corless, V. B.; Nguyen, Q. N. N.; Bergeron-Brlek,
M.; Frost, J.; Adachi, S.; Tantillo, D. J.; Yudin, A. K. Chem. Eur. J. 2017,
23, 13319–13322.
The authors declare no conflict of interest.
(23) White, C. J.; Hickey, J. L.; Scully, C. C. G.; Yudin, A. K. J. Am. Chem.
Soc. 2014, 136, 3728–3731.
Acknowledgements
(24) Hall, J. E.; Matlock, J. V.; Ward, J. W.; Gray, K. V.; Clayden, J. Angew.
Chem. Int. Ed. Engl. 2016, 55, 11153–11157.
This work was supported by the Australian Research Council
(DP180101804 and DP150100692) and the High Performance
Computing Facilities of The University of Melbourne and the
National Computational Infrastructure. We acknowledge the
support of the Bio21 Molecular Science and Biotechnology
(25) Hill, J. E.; Matlock, J. V.; Lefebvre, Q.; Cooper, K. G.; Clayden, J. Angew.
Chem. Int. Ed. Engl. 2018, 57, 5788–5791.
(26) Borchardt, A.; Still, W. C. Synlett 1995, 539–540.
(27) Pourvali, A.; Cochrane, J. R.; Hutton, C. A. Chem. Commun. 2014, 50,
15963–15966.
(28) Hutton, C. A.; Shang, J.; Wille, U. Chem. Eur. J. 2016, 22, 3163–3169.
This article is protected by copyright. All rights reserved.