The reaction can take place in aqueous buffer without using
organic solvents and additional catalysts. More importantly,
the probe could selectively detect thiols rather than other strong
nucleophiles such as amines. We also proved that the probe could
be applied to detect thiols in live cells. On account of the above
experimental results, we believe that this probe would provide a
useful tool for quantifying thiols for biomedical analysis.
The author would like to thank for the financial support from
the City University of Hong Kong Start-up Grant (7200258).
Notes and references
Fig. 3 pH dependent experiments of probe 1. The reaction of probe 1
20 mM) with different amino acids (200 mM) was performed with
buffers at different pH values. The fluorescent intensity was measured
after overnight incubation.
(
1 (a) D. M. Townsend, K. D. Tew and H. Tapiero, Biomed.
Pharmacother., 2003, 57, 145; (b) X. Chen, Y. Zhou, X. Peng
and J. Yoon, Chem. Soc. Rev., 2010, 39, 2120.
2
(a) S. Shahrokhian, Anal. Chem., 2001, 73, 5972; (b) L. A. Herzenberg,
S. C. De Rosa, J. G. Dubs, M. Roederer, M. T. Anderson, S. W. Ela,
S. C. Deresinski and L. A. Herzenberg, Proc. Natl. Acad. Sci. U. S. A.,
1997, 94, 1967.
3
(a) S. Seshadri, A. Beiser, J. Selhub, P. F. Jacques, I. H. Rosenberg,
R. B. D’Agostino, P. W. F. Wilson and P. A. Wolf, N. Engl. J.
Med., 2002, 346, 476; (b) H. Refsum, P. M. Ueland, O. Nygard and
S. E. Vollset, Annu. Rev. Med., 1998, 49, 31.
4
5
(a) A. R. Ivanov, I. V. Nazimov and L. A. Baratova, J. Chromatogr., A,
2000, 870, 433; (b) Y. V. Tcherkas and A. D. Denisenko,
J. Chromatogr., A, 2001, 913, 309.
(a) W. Wang, L. Li, S. Liu, C. Ma and S. Zhang, J. Am. Chem.
Soc., 2008, 130, 10846; (b) S. Fei, J. Chen, S. Yao, G. Deng, D. He
and Y. Kuang, Anal. Biochem., 2005, 339, 29.
Fig. 4 Fluorescence microscopy experiments to detect thiol in A549
cells. Fluorescence image obtained (a) immediately after addition of
probe 1, (b) 5 min after addition of probe 1 and (c) 25 min after
addition of probe 1.
6 (a) A. P. Vellasco, R. Haddad, M. N. Eberlin and N. F. Hoehr,
Analyst, 2002, 127, 1050; (b) M. J. MacCoss, N. K. Fukagawa and
D. E. Matthews, Anal. Chem., 1999, 71, 4527.
of the probe is pH dependent. The fluorescence response of
the probe is lower under acidic conditions (pH 2–4). The
maximum fluorescence signal was observed in the pH range
of 6 to 10 (Fig. S7, ESIw). There was no reaction spotted with
several representative amino acids under different pH values in
the pH interval 6–10 (Fig. 3). From these results, it is evident
that the probe could function over a wide range of pH values
and react selectively towards the thiol group. With this advan-
tageous property, the probe could be suitable for application in
a broader scope of biological sample analysis.
7
(a) T. Inoue and J. R. Kirchhoff, Anal. Chem., 2002, 74, 1349;
b) G. Chen, L. Zhang and J. Wang, Talanta, 2004, 64, 1018.
(
8
(a) O. Rusin, N. N. St. Luce, R. A. Agbaria, J. O. Escobedo,
S. Jiang, I. M. Warner and R. M. Strongin, J. Am. Chem. Soc.,
2004, 126, 438; (b) W. Wang, O. Rusin, X. Xu, K. K. Kim,
J. O. Escobedo, S. O. Fakayode, K. A. Fletcher, M. Lowry,
C. M. Schowalter, C. M. Lawrence, F. R. Fronczek, I. M. Warner
and R. M. Strongin, J. Am. Chem. Soc., 2005, 127, 15949.
9 (a) T. O. Sippel, J. Histochem. Cytochem., 1981, 29, 314; (b) L. Yi,
H. Li, L. Sun, L. Liu, C. Zhang and Z. Xi, Angew. Chem., Int. Ed.,
2
009, 48, 4034; (c) S. Girouard, M. H. Houle, A. Grandbois,
J. W. Keillor and S. W. Michnick, J. Am. Chem. Soc., 2005,
27, 559; (d) D. Kand, A. M. Kalle, S. J. Varma and P. Talukdar,
To evaluate the function of the probe for biological applica-
tions, we performed an assay to detect intracellular thiols in
live cells. A549 cells were used in our study. As shown in
Fig. 4, there was no fluorescence detected with A549 cells upon
addition of the probe (Fig. 4a). After incubating with probe 1
for different time intervals, increasing levels of green fluores-
cence could be observed inside the cells under a fluorescence
microscope. The images also indicated that probe 1 was
mainly localized in the cytoplasm. Similar observations were
1
Chem. Commun., 2012, 48, 2722.
1
1
0 J. Kalia and R. T. Raines, Bioorg. Med. Chem. Lett., 2007, 17, 6286.
1 (a) H. Maeda, H. Matsuno, M. Ushida, K. Katayama, K. Saeki
and N. Itoh, Angew. Chem., Int. Ed., 2005, 44, 2922; (b) H. Maeda,
K. Katayama, H. Matsuno and T. Uno, Angew. Chem., Int. Ed.,
2006, 45, 1810; (c) J. Bouffard, Y. Kim, T. M. Swager,
R. Weissleder and S. A. Hilderbrand, Org. Lett., 2008, 10, 37.
2 (a) S. Ji, J. Yang, Q. Yang, S. Liu, M. Chen and J. Zhao, J. Org.
Chem., 2009, 74, 4855; (b) H. Li, J. Fan, J. Wang, M. Tian, J. Du,
S. Sun, P. Sun and X. Peng, Chem. Commun., 2009, 5904;
1
9b,17
(c) Y.-H. Ahn, J.-S. Lee and Y.-T. Chang, J. Am. Chem. Soc., 2007,
also made previously by other research groups.
This
129, 4510; (d) H. Y. Shiu, H. C. Chong, Y. C. Leung, M. K. Wong and
evidence suggests that the probe is cell-permeable and reacts
with intracellular thiols efficiently. We performed the control
experiment by preincubating cells with N-ethylmaleimide (NEM)
and subsequently adding the probe. No significant fluorescence
signal was observed from the cells after preincubation with NEM
C. M. Che, Chem.–Eur. J., 2010, 16, 3308; (e) S. Sreejith, K. P. Divya
and A. Ajayaghosh, Angew. Chem., Int. Ed., 2008, 47, 7883;
(f) H. S. Jung, K. C. Ko, G. H. Kim, A. R. Lee, Y. C. Na,
C. Kang, J. Y. Lee and J. S. Kim, Org. Lett., 2011, 13, 1498.
1
3 W. Lin, L. Yuan, Z. Cao, Y. Feng and L. Long, Chem.–Eur. J.,
2
009, 15, 5096.
14 M. Friedman, J. F. Cavins and J. S. Wall, J. Am. Chem. Soc., 1965,
87, 3672.
(Fig. S8, ESIw). The method described here might provide
a simple way to monitor alterations of thiol concentration
1
1
5 S. Takahashi, Japanese Patent JP02003448, 1990.
6 W. Xuan, C. Sheng, Y. Cao, W. He and W. Wang, Angew. Chem.,
Int. Ed., 2012, 51, 2882.
in live cells.
In summary, we have developed a new fluorescent probe for
selective detection of thiols based on 1,4-Michael addition.
17 H. Kwon, K. Lee and H. J. Kim, Chem. Commun., 2011, 47, 1773.
This journal is c The Royal Society of Chemistry 2012
1
0674 Chem. Commun., 2012, 48, 10672–10674