2502
G. Cusati, L. Djakovitch / Tetrahedron Letters 49 (2008) 2499–2502
supported by previous studies on the selective vinylation of
the indole nucleus, a reaction that occurs exclusively
through intramolecular CH-activation, for which we
remarked the exceptional high reactivity of the 2-methyl-
References and notes
1
. Joule, J. A. In Science of Synthesis; Thomas, E. J., Ed.; Thieme:
Stuttgart, 2001; pp 361–652.
2
3
4
. Sundberg, R. J. Indoles; Academic Press: London, 1996.
. Tois, J.; Franz e´ n, R.; Koskinen, A. Tetrahedron 2003, 59, 5395–5405.
. Pyrroles and their Benzo Derivatives: (III) Synthesis and Applications;
Sundberg, R. J., Ed.; Pergamon: Oxford, 1984; Vol. 4.
. Robinson, B. The Fischer Indole Synthesis; John Wiley and Sons:
Chichester, 1982.
2
6
indole (2-Me ꢀ 2-H > 2-Ph). In addition, such a mech-
anism would occur only when activated aryl halides, like
4
-bromonitrobenzene, are used.
5
In summary, according to these suggestions, the way the
arylation of the indole nucleus would occur depends
mainly on the reactivity of the indole nucleus towards the
Pd(II)-precursors initiating therefore the SNAr mecha-
nism; when too slow, the in situ reduction of the Pd(II)-pre-
cursors to Pd(0)-species occurs initiating then the ES
mechanism. In that case the overall reactivity would
depend on the rate of coordination of the indole nucleus
onto the Pd(II)-centre (which depends on the steric hin-
drance and the electron density on both the indole ring
and the metallic centre).
In conclusion, we reported in this communication an
efficient heterogeneously Pd-catalysed procedure for the
fully C3-selective arylation of various 2-susbtituted indoles.
Depending on the nature of the substituents on the indole
ring and on the aryl bromides, two ‘concurrent’ mecha-
nisms were proposed to account for the results observed.
Generally, indoles bearing donor groups led to lower con-
versions. Whatever, all evaluated substrates gave moderate
to high yields of target compounds (15–92% conversion,
6
7
8
. Hughes, D. L. Org. Prep. Proced. Int. 1993, 25, 607–632.
. Clark, R. D.; Repke, D. B. Heterocycles 1984, 22, 195–221.
. Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875–2911.
9. Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873–2920.
0. Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644–4680.
1. Cacchi, S.; Fabrizi, G.; Lamba, D.; Marinelli, F.; Parisi, L. M.
Synthesis 2003, 728–734.
1
1
1
2. Hegedus, S. L.; Allen, G. F.; Bozell, J. J.; Waterman, E. L. J. Am.
Chem. Soc. 1978, 100, 5800–5807.
13. Larock, R. C.; Babu, S. Tetrahedron Lett. 1987, 28, 5291–5294.
1
1
1
4. Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122,
662–5663.
5. Watanabe, M.; Yamamoto, T.; Nishiyama, M. Angew. Chem., Int.
Ed. 2000, 39, 2501–2504.
5
6. Ackermann, L. Org. Lett. 2005, 7, 439–442.
17. Witulski, B.; Alayrac, C.; Tevzadze-Saeftel, L. Angew. Chem., Int. Ed.
003, 42, 4257–4260.
8. Lane, B. S.; Brown, M. A.; Sames, D. J. Am. Chem. Soc. 2005, 127,
050–8057.
2
1
1
8
9. Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem.
Soc. 2006, 128, 4972–4973.
20. Bellina, F.; Cauteruccio, S.; Rossi, R. Eur. J. Org. Chem. 2006, 2006,
379–1382.
1. Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129,
2072–12073.
2. Djakovitch, L.; Rouge, P.; Zaidi, R. Catal. Commun. 2007, 8, 1561–
566.
1
4
0–85% isolated yields on some selected compounds) that
2
2
can compete with the best procedures reported to date
using homogeneous non-recyclable catalysts.
Current investigations focus on improving the activity
of the heterogeneous catalyst and on implementing this
step in a one-pot synthesis of pharmaceutically relevant
indoles.
1
1
23. Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R.
Tetrahedron Lett. 2007, 48, 2415–2419.
2
2
4. Djakovitch, L.; Koehler, K. J. Am. Chem. Soc. 2001, 123, 5990–5999.
5. The selectivity of the reaction was attributed through H NMR
1
analysis from isolated compounds. For example, proton NMR data
1
2
1
are provided for compounds 2 with R = H and R = Cl: H NMR
3
(
7
(
3
250 MHz, CDCl ); d ppm: 8.17 (s, 1H), 7.81 (d, J = 7.6 Hz, 1H),
.52 (d, J = 8.5 Hz, 2H), 7.33 (dd, J = 8.0 Hz, 16.3, 4H), 7.24–7.08
m, 3H); and R = H and R = OMe: H NMR (250 MHz, CDCl
ppm: 8.09 (s, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.51 (d, J = 8.7 Hz, 2H),
.34 (d, J = 7.5 Hz, 1H), 7.24–7.06 (m, 4H), 6.93 (d, J = 8.7 Hz,
H), 3.79 (s, 3H). In the case of C2-arylation a singlet signal would
Acknowledgements
3
3
1
2
1
3
); d
3
3
G.C. thanks the ‘Minist e` re de l’Education Nationale, de
l’Enseignement Sup e´ rieur et de la Recherche’ for funding.
We gratefully acknowledge the ‘Programme interdiscipli-
naire: Chimie Pour le D e´ veloppement Durable—R e´ seau
de Recherche 2: Aller vers une Chimie Eco-compatible’
for funding.
3
3
7
2
2
7
be expected at ca. 6.4 ppm for both compounds.
6. Djakovitch, L.; Rouge, P. J. Mol. Catal. A: Chem. 2007, 273, 230–239.
27. Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L.; Pace, P. Synlett 1997,
2
1363–1366.