NAIDOO AND RAUTENBACH
1
1 Shimizu T, Kogiso M, Masuda M. Vesicle assembly into microtubes.
Nature 1996; 383: 487–488.
2 Kogiso M, Ohnishi S, Yase K, Masuda M, Shimizu T. Dicarboxylic oligo-
peptide bolaamphiphiles: proton-triggered self-assembly of micro-
tubes with loose solid surfaces. Langmuir 1998; 14: 4978–4986.
DOI:10.1021/la9802419
The choice of dilute aqueous TFA as the acidic solvent medium
for the self-assembly of the model anionic bolaamphiphile signif-
icantly reduced self-assembly time and allowed the purification
of the compound of interest from a crude mixture. Monitoring
of the rapid assembly process corroborated our visual observa-
tion and confirmed programmed self-assembly rather than non-
specific aggregation or precipitation. Also, we obtained a better
understanding of self-assembly in 0.1% TFA and found that there
is a progression from oligomers in the solution to layered b-sheet
structures from which nanotubes and finally microtubes, consist-
ing of a multitude of elongated smaller microtubes, grew over
the self-assembly process (Figure 7).
To our knowledge, this is the first study using rapid self-assembly
induced by TFA for purification of an anionic oligoglycine
bolaamphiphile from a crude synthetic mixture. These results in-
dicated that the acidic environment combined with the dehydra-
tion effect induced by TFA lead to highly specific self-assembly
that can be compared with crystallisation and can therefore func-
tion as a purification method for analogous anionic peptides and
bolaamphiphiles.
1
1
3 Matsui H, Gologan B. Crystalline glycylglycine bolaamphiphile tubules
and their pH-sensitive structural transformation. J. Phys. Chem. B 2000;
1
04: 3383–3386. DOI:10.1021/jp994117p
1
4 Kogiso M, Masuda M, Shimizu T. Supramolecular polyglycine II-type
structure of glycylglycine bolaamphiphile. Supramol. Chem.1998; 9:
1
83–189.
1
1
5 Matsui H, Pan S, Gologan B, Jonas SH. Bolaamphiphile nanotube-
templated metallized wires. J. Phys. Chem. B, 2000; 104: 9576–9579.
6 Matsui H, Douberly GE. Organization of peptide nanotubes into
macroscopic bundles. Langmuir 2001; 17: 7918–7922. DOI:10.1021/
la010910+
7 Gao BX, Djalali R, Haboosheh A. Peptide nanotubes: simple separation
using size-exclusion columns and use as templates for fabricating
one-dimensional single chains of Au nanoparticles. Adv. Mater. 2005;
1
1
7: 1753–1757. DOI:10.1002/adma.200500357
18 Kameta N, Mizuno G, Masuda M, Minamikawa H, Kogiso M, Shimizu T.
Molecular monolayer nanotubes having 7–9 nm inner diameters
covered with different inner and outer surfaces. Chem. Lett. 2007;
3
6: 896–897. DOI:10.1246/cl.2007.896
1
2
9 Kameta N, Masuda M, Mizuno G, Morii N, Shimizu T. Supramolecular
nanotube endo sensing for a guest protein. Small 2008; 5: 561–565.
DOI:10.1002/smll.200700710
0 Kameta N, Yoshida K, Masuda M, Shimizu T. Supramolecular nano-
tube hydrogels: remarkable resistance effect of confined proteins
to denaturants. Chem. Mater. 2009; 21: 5892–5898. DOI:10.1021/
cm903108h
Acknowledgements
This work was supported by the National Research Foundation
SIDA grant to M. R. The authors would like to acknowledge the
following people: Vijay Bandu (Centre for Electron Microscopy,
University of Kwazulu-Natal) for his assistance with the E-SEM,
Johan Eygelaar and Paul Cloete from Roediger Agencies for their
assistance with the photoacoustic FTIR analyses, the late Hendrik
S. C. Spies (NMR Central Analytical Facility, Stellenbosch Univer-
sity) and Martin Bredenkamp (formerly from the Chemistry De-
partment, Stellenbosch University) for their assistance with the
NMR analyses/interpretation and Marthinus J van der Merwe (for-
merly from the LC-MS Central Analytical Facility, Stellenbosch
University) for his assistance with the ESMS analyses.
2
2
2
1 Atherton E, Gait MJ, Sheppard RC, Williams BJ. The polyamide method
of solid-phase peptide and oligonucleotide synthesis. Bioorg. Chem.
1
979; 8: 351–370.
2 Atherton E, Sheppard RC. Solid phase synthesis: a practical approach.
In The Practical Approach Series, IRL Press, Oxford University Press:
Oxford, 1989.
3 Carpino LA, Han GY. The 9-fluorenylmethoxycarbonyl function, a new
base sensitive amino-protecting group. J. Am. Chem. Soc. 1970; 92:
5
748–5749.
2
4 Carpino LA, Han GY. The 9-fluorenylmethoxycarbonyl amino-protecting
group. J. Org. Chem. 1972; 37: 3404–3409.
2
5 Bodansky M, In Principles of Peptide Synthesis . Hafner K, Rees CW,
Trost BM, Lehn J, Von Ragné Schleyer P, Zahradnik R (eds). Springer
Verlag: Berlin, 1984, 202–227.
References
1
2
3
Fuoss RM, Edelson DJ. Bolaform electrolytes. I. Di-(b-trimethylammo-
nium ethyl) succinate dibromide and related compounds. J. Am.
Chem. Soc. 1951; 73: 269–273. DOI:10.1021/ja01145a090
Zhao X. Design of self-assembling surfactant-like peptides and their
applications. Curr. Opin. Colloid In. 2009; 14: 340–348. DOI:10.1016/j.
cocis.2009.07.002
26 Johansson A, Åkerblom E, Ersmark K, Lindeberg G, Hallberg A. An im-
proved procedure for N- to C-directed (inverse) solid-phase peptide
synthesis. J. Comb. Chem. 2000; 2: 496–507. DOI:10.1021/cc000022h
27 Mihala N, Bódi J, Gömöry A, Süli-Vargha H. An alternative solid phase
peptide fragment condensation protocol with improved efficiency. J.
Pep Sci 2001; 7: 565–568. DOI:10.1002/psc.352
28 Thieriet N, Alsina J, Guibé F, Albericio F. In Peptides for the New Millen-
nium, Fields GB, Tam JP, Barany G (eds). Kluwer Academic Publisher:
Dordrecht, 2000, 78–79.
Shimizu T. Molecular self-assembly into one-dimensional nanotube
architectures and exploitation of their functions. Bull. Chem. Soc. Jpn.
2008; 81: 1554–1566. DOI:10.1246/bcsj.81.1554
4
5
Meister A, Blume A. Self-assembly of bipolar amphiphiles. Curr. Opin.
Colloid In. 2007; 12: 138–147. DOI:10.1016/j.cocis.2007.05.003
Gao BX, Matsui H. Peptide-based nanotubes and their applications in
bionanotechnology. Adv. Mater. 2005; 17: 2037–2050. DOI:10.1002/
adma.200401849
Meister A, Blume A. Self-assembly of bipolar amphiphiles. Curr. Opin.
Colloid In. 2007; 12: 138–147. DOI:10.1016/j.cocis.2007.05.003
Shimizu T. Bottom-up synthesis and morphological control of high-
axial-ratio nanostructures through molecular self-assembly. Polym. J.
29 Thieriet N, Guibé F, Albericio F. Solid-phase peptide synthesis in the
reverse (N ! C) direction. Org. Lett. 2000; 2: 1815–1817,
DOI:10.1021/ol0058341
30 Wang P, Landon M, Layfield R, Mayer RJ, Ramage R. In Innovation and
Perspectives in Solid Phase Synthesis and Combinatorial Libraries, Epton
R (ed.). Mayflower Scientific Limited: Birmingham, 1999, 415–416.
31 Huang YD, Yang SZ, Feng YM, Niu CI. An insulin analogue with g-
amino butyric acid substitution for A13Leu-A14Tyr. J. Pept. Res. 1999;
54: 18–22. DOI:10.1034/j.1399-3011.1999.00068.x
6
7
2
003; 35: 1–22. DOI:10.1295/polymj.35.1
32 Davis M-TB, Preston JF. A simple modified carbodiimide method for
conjugation of small-molecular-weight compounds to immunoglobu-
lin G with minimal crosslinking. Anal. Biochem. 1981; 116: 402–407.
DOI:10.1016/0003-2697(81)90380-8
8
Zhang S, Marini DM, Hwang W, Santoso S. Design of nanostructured
biological materials through self-assembly of peptides and proteins.
Curr. Opin. Chem. Biol. 2002; 6: 865–871. DOI:10.1016/S1367-5931(02)
0
0391-5
33 Han S-Y, Kim Y-A. Recent development of peptide coupling reagents
in organic synthesis. Tetrahedron 2004; 60: 2447–2467. DOI:10.1016/
j.tet.2004.01.020
9
Luk Y-Y, Abbott NL. Applications of functional surfactants. Curr. Opin.
Colloid In. 2002; 7: 276–275. DOI:10.1016/S1359-0294(02)00067-5
1
0 Grigoryan NA, Mndzhoyan ZO, Kazaryan EV, Ter-Zakharyan YZ,
Mndzhoyan OL. Synthesis and antistaphylococcic activity of dicarbox-
ylic acid derivatives having an amino acid fragment. Pharm. Chem. J.
34 Hfeg-Jensen T, Jakobsen MH, Olsen CD, Holm A. Formation of pep-
tide thioamides by use of Fmoc amino monothioacids and PyBOP.
Tetrahedron Lett. 1991; 32: 7617–7620. DOI:10.1016/0040-4039(91)
80549-L
1992; 26: 153–157. DOI:10.1007/BF00766456
wileyonlinelibrary.com/journal/jpepsci Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd. J. Pept. Sci. 2012; 18: 317–325