the oxidation of monoprotected Z-but-2-ene-1,4-diols9
(Z-2) followed by an Z/E-isomerization. In the literature,
oxidations of Z-2 have been described with virtually any
known oxidant.10 Interestingly, only pyridine-based oxi-
dations (PCC,11 ParikhÀDoering12) result in concomitant
Z/E-isomerization. We speculated that pyridine is the
responsible isomerization catalyst. Indeed, treatment of
Z-1 with pyridine (1 equiv)13 results in a clean isomeriza-
tion to afford E-1 within 15 min. At this time, we took
notice of an efficient aerobic CuI(bpy)-TEMPO oxidation
of primary alcohols reported by Stahl.14 His efficient
protocol is based on pioneering work by Semmelhack,15
catalysts that would be expected to survive the oxidation
conditions. Interestingly, Stahl uses N-methylimidazole
(NMI), an aromatic amine base additive that could act as
the isomerization catalyst. Figure 1 depicts the catalytic
activity of pyridine, NMI, and other nitrogen-based cata-
lysts (0.25 M Z-2b in MeCN-d3, R = Ac, 1 mol % catalyst).
Pyridine was the slowest of all tested amines and led to just
4% conversion in the observed time window (185 min).
NMI was significantly faster (11% conversion) but still
not a useful catalyst. In 1985, Keck19 reported N,N-
dimethylaminopyridine (DMAP)20 as the catalyst for the
isomerization of R,β-unsaturated thioesters, and Evans21
ꢀ 16
Marko, Sheldon,17 and Koskinen.18 As monoprotected
Z-but-2-ene-1,4-diol was one of the most reactive sub-
strates in Stahl’s screening, we used his optimized condi-
tions and added pyridine (1 equiv) after completion of the
oxidation (Scheme 1). Aldehyde E-1 was isolated in 87%
yield. Although this one-pot procedure already solves the
initial problem, we were not satisfied with the efficiency
of the isomerization.
Scheme 1. One-Pot OxidationÀIsomerization of Z-2a Using
Stahl’s Conditions and a Stoichiometric Amount of Pyridine
A plausible mechanism involves a reversible 1,4-addi-
tion of pyridine and is related to the MoritaÀBaylisÀ
Hillman (MBH) and the RauhutÀCurrier (RC) reactions.
Therefore, we tested a series of successful MBH and RC
Figure 1. Conversion of Z-1b vs time plots of the Z/E-isomer-
ization with different aromatic amines as catalyst.
(8) (a) Organ, M. G.; Cooper, J. T.; Rogers, L. R.; Soleymanzadeh,
F.; Payl, F. J. Org. Chem. 2000, 65, 7959. (b) Crimmins, M. T.; DeBaillie,
A. C. J. Am. Chem. Soc. 2006, 128, 4936.
(9) E-But-2-ene-1,4-diol is significantly more expensive.
(10) (a) Swern: Uenishi, J.; Motoyama, M.; Kimura, Y.; Yonemitsu,
O. Heterocycles 1998, 47, 439. (b) PCC: Roush, W. R.; Reilly, M. L.;
Koyama, K.; Brown, B. B. J. Org. Chem. 1997, 62, 8708. (c) PDC:
Crilley, M. M. L.; Golding, B. T.; Pierpoint, C. J. Chem. Soc., Perkin
Trans. 1 1988, 2061. (d) TPAP/NMO: Zhang, P.; Morken, J. P. J. Am.
Chem. Soc. 2009, 131, 12550.
used a similar isomerization in the total synthesis of
lepicidine. Apart from these two examples, there has been
no systematic investigation of pyridine/DMAP-catalyzed
isomerizations. In our test reaction, DMAP was a very
active catalyst resulting in complete conversion. Using
Mayr’s nucleophilicity parameter N as a guide,22 we tested
more nucleophilic analogs of DMAP (N = 15 in MeCN).
The recently reported Bn-Super-DMAP23 (N = 18)
(11) Ramachandran, P. V.; Burghardt, T. E.; Reddy, M. V. R. J. Org.
Chem. 2005, 70, 2329.
(12) Boone, M. A.; McDonald, F. E.; Lichter, J.; Lutz, S.; Cao, R.;
Hardcastle, K. I. Org. Lett. 2009, 11, 851.
(13) It is possible to use substoichiometric amounts of pyridine at the
(17) (a) Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Chem.
ꢀ
Commun. 1999, 1591. (b) Dijksman, A.; Marino-Gonzalez, A.; Mirata i
Payeras, A.; Arends, I. W. C. E.; Sheldon, R. A. J. Am. Chem. Soc. 2001,
123, 6826. (c) Sheldon, R. A.; Arends, I. W. C. E.; Ten Brink, G.-J.;
Dijksman, A. Acc. Chem. Res. 2002, 35, 774. (d) Dijksman, A.; Arends, I.
W. C. E.; Sheldon, R. A. Org. Biomol. Chem. 2003, 1, 3232. (e) Gamez,
P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Chem. Commun. 2003,
2414. (f) Gamez, P.; Arends, I. W. C. E.; Sheldon, R. A.; Reedijk, J. Adv.
Synth. Catal. 2004, 346, 805.
(18) Kumpulainen, E. T. T.; Koskinen, A. M. P. Chem.;Eur. J.
2009, 15, 10901.
(19) Keck, G. E.; Boden, E. P.; Mabury, S. A. J. Org. Chem. 1985, 50,
709.
cost of extended reaction times.
(14) (a) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133,
16901. (b) Hoover, J. M.; Steves, J. E.; Stahl, S. S. Nat. Protoc. 2012, 7,
1162. (c) For an alternative organocatalytic oxidation, see: Shibuya, M.;
Osada, Y.; Sasano, Y.; Tomizawa, M.; Iwabuchi, Y. J. Am. Chem. Soc.
2011, 133, 6497.
ꢀ
(15) (a) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou,
C. S. J. Am. Chem. Soc. 1984, 106, 3374. (b) Semmelhack, M. F.; Schmid,
ꢀ
C. R.; Cortes, D. A. Tetrahedron Lett. 1986, 27, 1119.
ꢀ
(16) (a) Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.;
ꢀ
Urch, C. J. Science 1996, 274, 2044. (b) Marko, I. E.; Gautier, A.;
€
(20) Steglich, W.; Hofle, G. Tetrahedron Lett. 1970, 54, 4727.
ꢀ
Chelle-Regnaut, I.; Giles, P. R.; Tsukazaki, M.; Urch, C. J.; Brown,
ꢀ
(21) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497.
(22) Mayr, H.; Kempf, B.; Ofial, A. R. Acc. Chem. Res. 2003, 36, 66.
(23) (a) De Rycke, N.; Berionni, G.; Couty, F.; Mayr, H.; Goumont,
R.; David, O. R. P. Org. Lett. 2011, 13, 530. (b) For a review, see: De
Rycke, N.; Couty, F.; David, O. R. P. Chem.;Eur. J. 2011, 17, 12852.
S. M. J. Org. Chem. 1998, 63, 7576. (c) Marko, I. E.; Gautier, A.;
Mutonkole, J.-L.; Dumeunier, R.; Ates, A.; Urch, C. J.; Brown, S. M.
ꢀ
J. Organomet. Chem. 2001, 624, 344. (d) Marko, I. E.; Gautier, A.;
Dumeunier, R.; Doda, K.; Philippart, F.; Brown, S. M.; Urch, C. J.
Angew. Chem., Int. Ed. 2004, 43, 1588.
B
Org. Lett., Vol. XX, No. XX, XXXX