10.1002/chem.201704954
Chemistry - A European Journal
COMMUNICATION
persistence of 1 at the end of catalysis. For example, catalytic
reactions using 1-d3 result in nearly quantitative restoration of the
pre-catalyst by 2H NMR spectroscopy upon complete conversion
of the substrates. Though it is a negative result, CD3H was not
observed in reactions using 1-d3 as a catalyst. Following
migratory insertion, activation of phosphine substrate by P–H
oxidative addition would give an iron(IV) intermediate that would
engage in α-phosphinidene elimination, though the order of steps
(PR transfer vs. H2 evolution is unknown). It is also possible that
a terminal iron phosphinidene derivative is formed. However, the
transfer reactions herein are inconsistent with the PR-transfer
reactivity of known terminal phosphinidene compounds,[26] though
that area is sorely under-investigated. It is unclear that trapping
with organic substrates need or need not involve interaction with
the metal. Thus, we favor elimination as a working hypothesis.
The observed dehydrocoupling products including those of P–H
insertion, P–P insertion, and condensation are consistent with
other α-elimination reactions.[3-4] Current evidence prevents more
than speculation at this point. Given the reactivity of :PPh,[17, 20]
the lack of apparent reaction with solvent suggests high
association with iron, consistent with theoretical analysis of α-
stannylene elimination.[27] Reductive elimination of H2 would close
the cycle and is also consistent with the observation of H2 in the
Acknowledgements
This work was supported by the U.S. National Science
Foundation (CHE-1265608 and CHE-1565658). We would also
like to thank Dr. Jaqueline Kiplinger (LANL) for providing
computational resources for preparing data and this manuscript.
Keywords: Phosphorus • Phosphinidene • Iron • Catalysis •
Trapping
References
[1]
[2]
[3]
a) A. Staubitz, A. P. M. Robertson, I. Manners, Chem. Rev. 2010, 110,
4079-4124; b) A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners,
Chem. Rev. 2010, 110, 4023-4078; c) J. I. Bates, J. Dugal-Tessier, D. P.
Gates, Dalton Trans. 2010, 39, 3151-3159; d) R. Waterman, Dalton
Trans. 2009, 18-26; e) R. Waterman, Organometallics 2013, 32, 7249-
7263; f) C. A. Bange, R. Waterman, Chem. Eur. J. 2016, 22, 12598-
12605; g) R. Waterman, Cur. Org. Chem. 2012, 16, 1313-1331.
a) A. J. Roering, S. E. Leshinski, S. M. Chan, T. Shalumova, S. N.
MacMillan, J. M. Tanski, R. Waterman, Organometallics 2010, 29, 2557-
2565; b) A. J. Roering, L. T. Elrod, J. K. Pagano, S. L. Guillot, S. M. Chan,
J. M. Tanski, R. Waterman, Dalton Trans. 2013, 42, 1159-1167; c) M. B.
Ghebreab, C. A. Bange, R. Waterman, J. Am. Chem. Soc. 2014, 136,
9240-9243; d) C. A. Bange, R. Waterman, ACS Catalysis 2016, 6, 6413-
6416.
dehydrocoupling and trapping reactions. Such
a cycle is
consistent with iron-based steps in Si–S coupling involving the
retention of 1 and H2 loss as proposed by Nakazawa.[28]
In conclusion, a rare example of what may catalytic α-
phosphinidene elimination mediated by the ubiquitous iron
complex 1 is reported. Phosphine dehydrocoupling reactions
provided initial insight into this interesting reaction type, and
catalytic trapping reactions were successful using 2,3-dimethyl-
1,3-butadiene, internal alkynes, and diethyldisulfide, which are
consistent with the reactivity expected for a putative triplet
phosphinidene. Deuterium labelling studies, product distributions,
and reaction studies further support the claim that this catalysis is
based largely on the α-elimination of a triplet phosphinidene.
Further work to expand the substrate scope of this reaction to a
broader set of reagents, and investigation of the phosphinidene
spin state are underway.
a) N. R. Neale, T. D. Tilley, J. Am. Chem. Soc. 2002, 124, 3802-3803; b)
N. R. Neale, T. D. Tilley, Tetrahedron 2004, 60, 7247-7260; c) N. R.
Neale, T. D. Tilley, J. Am. Chem. Soc. 2005, 127, 14745-14755.
a) R. Waterman, T. D. Tilley, Angew. Chem. Int. Ed 2006, 45, 2926-2929;
b) T. Pugh, N. F. Chilton, R. A. Layfield, Chem. Sci. 2017, 8, 2073-2080.
A. J. Roering, J. J. Davidson, S. N. MacMillan, J. M. Tanski, R. Waterman,
Dalton Trans. 2008, 4488-4498.
[4]
[5]
[6]
S. M. Jackson, D. M. Chisholm, J. S. McIndoe, L. Rosenberg, Eur. J.
Inorg. Chem. 2011, 2011, 327-330.
[7]
[8]
F. Mathey, Angew. Chem. Int. Ed. 1987, 26, 275-286.
a) C. Compain, B. Donnadieu, F. Mathey, Organometallics 2005, 24,
1762-1765; b) F. Mathey, Dalton Trans. 2007, 1861-1868; c) X. Zhao, Z.
Lu, Q. Wang, D. Wei, Y. Lu, Z. Duan, F. Mathey, Organometallics 2016;
d) Z. Benko, R. Streubel, L. Nyulaszi, Dalton Trans. 2006, 4321-4327.
a) L. Liu, David A. Ruiz, D. Munz, G. Bertrand, Chem 2016, 1, 147-153;
b) M. M. Hansmann, R. Jazzar, G. Bertrand, J. Am. Chem. Soc. 2016,
138, 8356-8359.
[9]
[10] a) F. Mathey, Chem. Rev. 1988, 88, 429-453; b) F. Mathey, Sci. Syn.
2002, 9, 553-600; c) M. J. van Eis, H. Zappey, F. J. J. de Kanter, W. H.
de Wolf, K. Lammertsma, F. Bickelhaupt, J. Am. Chem. Soc. 2000, 122,
3386-3390; d) K. Lammertsma, in New Aspects in Phosphorus
Chemistry III, Vol. 229 (Ed.: J.-P. Majoral), Springer Berlin Heidelberg,
2003, pp. 95-119; e) M. L. G. Borst, R. E. Bulo, D. J. Gibney, Y. Alem, F.
J. J. de Kanter, A. W. Ehlers, M. Schakel, M. Lutz, A. L. Spek, K.
Lammertsma, J. Am. Chem. Soc. 2005, 127, 16985-16999.
[11] A. Velian, C. C. Cummins, J. Am. Chem. Soc. 2012, 134, 13978-13981.
[12] K. Pal, O. B. Hemming, B. M. Day, T. Pugh, D. J. Evans, R. A. Layfield,
Angew. Chem., Int. Ed. 2016, 55, 1690-1693.
[13] a) M. A. Alvarez, M. E. García, M. A. Ruiz, J. Suárez, Angew. Chem., Int.
Ed. 2011, 50, 6383-6387; b) M. A. Alvarez, M. E. García, D. García-Vivó,
A. Ramos, M. A. Ruiz, Inorg. Chem. 2012, 51, 3698-3706.
[14] R. Waterman, Organometallics 2007, 26, 2492-2494.
[15] The results of other dehydrocoupling reactions can be found in the
supplementary information.
Scheme 5. Potential catalytic cycle for the liberation of phosphinidene
fragments by 1 based on prior examples of E–H activation by 1 and related
derivatives. The order of phosphinidene elimination versus H2 loss is not known
and may be reversed. Initial H2 loss may promote formation of an iron-
phosphinidene intermediate that available data can neither prove nor refute.
[16] a) M. Kamitani, M. Itazaki, C. Tamiya, H. Nakazawa, J. Am. Chem. Soc.
2012, 134, 11932-11935; b) M. Itazaki, S. Katsube, M. Kamitani, H.
Nakazawa, Chem. Commun. 2016, 52, 3163-3166.
[17] U. Schmidt, I. Boie, Angew. Chem. Int. Ed. 1966, 5, 1038.
[18] P. J. Fagan, W. A. Nugent, Org. Syn. 1992, 70.
This article is protected by copyright. All rights reserved.