Organic Letters
Letter
Acids. Eur. J. Org. Chem. 2011, 2011, 3261. (d) Aparici, I.; Guerola,
REFERENCES
■
́
́
́
M.; Dialer, C.; Simon-Fuentes, A.; Sanchez-Rosello, M.; del Pozo, C.;
́
̈
(1) For selected reviews, see: (a) Kiss, L.; Mandity, I. M.; Fu
̈
lop, F.
́
Fustero, S. Org. Lett. 2015, 17, 5412. (e) Kiss, L.; Nonn, M.; Forro,
Highly functionalized cyclic β-amino acid moieties as promising
scaffolds in peptide research and drug design. Amino Acids 2017, 49,
1441. (b) Wang, P. S. P.; Schepartz, A. β-Peptide bundles: Design.
Build. Analyze. Biosynthesize. Chem. Commun. 2016, 52, 7420.
(c) Werner, H. M.; Horne, W. S. Folding and function in α/β-
peptides: targets and therapeutic applications. Curr. Opin. Chem. Biol.
2015, 28, 75. (d) Cabrele, C.; Martinek, T. A.; Reiser, O.; Berlicki, Ł.
Peptides Containing β-Amino Acid Patterns: Challenges and
Successes in Medicinal Chemistry. J. Med. Chem. 2014, 57, 9718.
(e) Aguilar, M.-I.; Purcell, A. W.; Devi, R.; Lew, R.; Rossjohn, J.;
Smith, A. I.; Perlmutter, P. β-Amino acid-containing hybrid
peptidesnew opportunities in peptidomimetics. Org. Biomol.
̈
̈
̈
̈
E.; Sillanpaa, R.; Fustero, S.; Fulop, F. A selective synthesis of
fluorinated cispentacin derivatives. Eur. J. Org. Chem. 2014, 2014,
4070.
(5) For example, the Hansch lipophilicity parameter derived for
substituted benzenes is significantly higher for SCF3 (π = 1.44) than
for OCF3 and CF3 groups (π = 1.04 and 0.88 respectively):
(a) Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis
in Chemistry and Biology; Wiley: New York, 1979. (b) Smart, B. E.
Characteristics of C−F Systems. In Organofluorine Chemistry,
Principles and Commercial Applications; Banks, R. E., Smart, B. E.,
Tatlow, J. C., Eds.; Springer Science + Business Media, LLC: New
York, 1994; pp 57−88.
Chem. 2007, 5, 2884. (f) Fulop, F. The Chemistry of 2-Amino-
̈
̈
(6) (a) Stock, M. L.; Elazab, S. T.; Hsu, W. H. Review of triazine
antiprotozoal drugs used in veterinary medicine. J. Vet. Pharmacol.
Ther. 2018, 41, 184. (b) Jimonet, P.; Audiau, F.; Barreau, M.;
cycloalkanecarboxylic Acids. Chem. Rev. 2001, 101, 2181. (g) Cheng,
R. P.; Gellman, S. H.; DeGrado, W. F. β-Peptides: From Structure to
Function. Chem. Rev. 2001, 101, 3219. (h) DeGrado, W. F.;
Schneider, J. P.; Hamuro, Y. The twists and turns of β-peptides. J.
Pept. Res. 1999, 54, 206.
́
Blanchard, J.-C.; Boireau, A.; Bour, Y.; Coleno, M.-A.; Doble, A.;
Doerflinger, G.; Do Huu, C.; Donat, M.-H.; Duchesne, J. M.; Ganil,
́
́
́
P.; Gueremy, C.; Honore, E.; Just, B.; Kerphirique, R.; Gontier, S.;
Hubert, P.; Laduron, P. M.; Le Blevec, J.; Meunier, M.; Miquet, J.-M.;
Nemecek, C.; Pasquet, M.; Piot, O.; Pratt, J.; Rataud, J.; Reibaud, M.;
Stutzmann, J.-M.; Mignani, S. Riluzole Series. Synthesis and in Vivo
“Antiglutamate” Activity of 6-Substituted-2-benzothiazolamines and
3-Substituted-2-imino-benzothiazolines. J. Med. Chem. 1999, 42,
2828. (c) Watling, K. J. Stereospecific inhibition of dopamine-
sensitive adenylate cyclase in carp retina by the enantiomers of ( )-
1-cyclopropylmethyl-4-(3-trifluoromethylthio-5H-dibenzo [a,d] cy-
clohepten-5-ylidene) piperidine (CTC). J. Pharm. Pharmacol. 1980,
32, 778. (d) Harder, A.; Haberkorn, A. Possible mode of action of
toltrazuril: studies on two Eimeria species and mammalian and Ascaris
suum enzymes. Z. Parasitenkd. 1989, 76, 8. (e) Kirby, J. M.;
Carageorgiou-Markomihalakis, H.; Turner, P. Studies with flutiorex, a
new anorectic drug, on glucose uptake into human isolated skeletal
muscle. J. Clin. Pharmacol. 1979, 7, 353. (f) Hosie, A. M.; Baylis, H.
A.; Buckingham, S. D.; Sattelle, D. B. Actions of the insecticide
fipronil, on dieldrin−sensitive and − resistant GABA receptors of
Drosophila melanogaster. Br. J. Pharmacol. 1995, 115, 909. (g) Verbist,
L. Comparison of the Antibacterial Activity of Nine Cephalosporins
Against Enterobacteriaceae and Nonfermentative Gram-Negative
Bacilli. Antimicrob. Agents Chemother. 1976, 10, 657.
(2) For selected reviews, see: (a) Verhoork, S. J. M.; Killoran, P. M.;
Coxon, C. M. Fluorinated Prolines as Conformational Tools and
Reporters for Peptide and Protein Chemistry. Biochemistry 2018, 57,
6132. (b) Huhmann, S.; Koksch, B. Fine-Tuning the Proteolytic
Stability of Peptides with Fluorinated Amino Acids. Eur. J. Org. Chem.
̈
2018, 2018, 3667. (c) Berger, A. A.; Voller, J.-S.; Budisa, N.; Koksch,
B. Deciphering the Fluorine Code―The Many Hats Fluorine
Wears in a Protein Environment. Acc. Chem. Res. 2017, 50, 2093.
(d) Arntson, K. E.; Pomerantz, W. C. K. Protein-Observed Fluorine
NMR: A Bioorthogonal Approach for Small Molecule Discovery. J.
Med. Chem. 2016, 59, 5158. (e) Marsh, E. N. G. Fluorinated Proteins:
From Design and Synthesis to Structure and Stability. Acc. Chem. Res.
2014, 47, 2878. (f) Salwiczek, M.; Nyakatura, E. K.; Gerling, U. I. M.;
Ye, S.; Koksch, B. Fluorinated amino acids: compatibility with native
protein structures and effects on protein−protein interactions. Chem.
Soc. Rev. 2012, 41, 2135. (g) Yoder, N. C.; Kumar, K. Fluorinated
amino acids in protein design and engineering. Chem. Soc. Rev. 2002,
31, 335.
(3) (a) March, T. L.; Johnston, M. R.; Duggan, P. J.; Gardiner, J.
Synthesis, Structure, and Biological Applications of α-Fluorinated β-
Amino Acids and Derivatives. Chem. Biodiversity 2012, 9, 2410.
(b) Molski, M. A.; Goodman, J. L.; Craig, C. J.; Meng, H.; Kumar, K.;
Schepartz, A. β-Peptide Bundles with Fluorous Cores. J. Am. Chem.
Soc. 2010, 132, 3658. (c) Molski, M. A.; Goodman, J. L.; Chou, F.-C.;
Baker, D.; Das, R.; Schepartz, A. Remodeling a β-Peptide Bundle.
Chem. Sci. 2013, 4, 319. (d) Hook, D. F.; Gessier, F.; Noti, C.; Kast,
P.; Seebach, D. Probing the Proteolytic Stability of β-Peptides
Containing α-Fluoro- and α-Hydroxy-β-Amino Acids. ChemBioChem
2004, 5, 691. (e) Volonterio, A.; Bellosta, S.; Bravin, F.; Bellucci, M.
(7) (a) Hardy, M. A.; Chachignon, H.; Cahard, D. Advances in
Asymmetric Di- and Trifluoromethylthiolation, and Di and
Trifluoromethoxylation Reactions. Asian J. Org. Chem. 2019, 8, 591.
(b) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Advances in Catalytic
Enantioselective Fluorination, Mono-, Di-, and Trifluoromethylation,
and Trifluoromethylthiolation Reactions. Chem. Rev. 2015, 115, 826.
(c) Rossi, S.; Puglisi, A.; Raimondi, L.; Benaglia, M. Synthesis of
Alpha-trifluoromethylthio Carbonyl Compounds: A Survey of the
Methods for the Direct Introduction of the SCF3 Group on to
Organic Molecules. ChemCatChem 2018, 10, 2717. (d) Barata-
Vallejo, S.; Bonesi, S.; Postigo, A. Late stage trifluoromethylthiolation
strategies for organic compounds. Org. Biomol. Chem. 2016, 14, 7150.
(e) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Synthetic Methods for
Compounds Having CF3−S Units on Carbon by Trifluoromethyla-
tion, Trifluoromethylthiolation, Triflylation, and Related Reactions.
Chem. Rev. 2015, 115, 731.
(8) (a) Nascimento de Oliveira, M.; Arseniyadis, S.; Cossy, J.
Palladium-Catalyzed Asymmetric Allylic Alkylation of 4-Substituted
Isoxazolidin-5-ones: Straightforward Access to β2,2-Amino Acids.
Chem. - Eur. J. 2018, 24, 4810. (b) Yu, J.-S.; Noda, H.; Shibasaki,
M. Exploiting β-Amino Acid Enolates in Direct Catalytic Diastereo-
and Enantioselective C−C Bond-Forming Reactions. Chem. - Eur. J.
2018, 24, 15796. (c) Yu, J.-S.; Noda, H.; Shibasaki, M. Quaternary
β2,2-Amino Acids: Catalytic Asymmetric Synthesis and Incorporation
into Peptides by Fmoc-Based Solid-Phase Peptide Synthesis. Angew.
Chem., Int. Ed. 2018, 57, 818.
́
C.; Bruche, L.; Colombo, G.; Malpezzi, L.; Mazzini, S.; Meille, S. V.;
Meli, M.; Ramírez de Arellano, C.; Zanda, M. Synthesis, Structure and
Conformation of Partially-Modified Retro- and Retro-Inverso ψ-
[NHCH(CF3)]Gly Peptides. Chem. - Eur. J. 2003, 9, 4510. (f) Zanda,
M. Trifluoromethyl group: an effective xenobiotic function for peptide
backbone modification. New J. Chem. 2004, 28, 1401. (g) Thaisri-
vongs, S.; Schostarez, H. J.; Pals, D. T.; Turner, S. R. α,α-Difluoro-β-
aminodeoxystatine-Containing Renin Inhibitory Peptides. J. Med.
Chem. 1987, 30, 1837. (h) Ohba, T.; Ikeda, E.; Takei, H. Inactivation
of serine protease, α-chymotrypsin by fluorinated phenylalanine
analogues. Bioorg. Med. Chem. Lett. 1996, 6, 1875. (i) Ojima, I.; Lin,
S.; Slater, J. C.; Wang, T.; Pera, P.; Bernacki, R. J.; Ferlini, C.;
Scambia, G. Syntheses and Biological Activity of C-3′-Difuoromethyl-
Taxoids. Bioorg. Med. Chem. 2000, 8, 1619.
́
̃
(4) (a) Acena, J. L.; Simon-Fuentes, A.; Fustero, S. Recent
Developments in the Synthesis of Fluorinated β-Amino Acids. Curr.
Org. Chem. 2010, 14, 928. (b) Mikami, K.; Fustero, S.; Sanchez-
́
́
Rosello, M.; Acena, J. L.; Soloshonok, V.; Sorochinsky, A. Synthesis of
̃
Fluorinated β-Amino. Synthesis 2011, 2011, 3045. (c) Qiu, X.-L.;
Qing, F. L. Recent Advances in the Synthesis of Fluorinated Amino
D
Org. Lett. XXXX, XXX, XXX−XXX