ChemComm
Page 4 of 4
COMMUNICATION
DOI: 10.1039/C4CC09542A
4 A. B. Bowman, G. F. Kwakye, E. H. Hernandez and M. Aschner, J. Trace
Elem. Med. Biol., 2011, 25, 191ꢀ203.
5 J. Kaiser, Science, 2003, 300, 926ꢀ928.
In order to test the in cellulo response we chose M1 since it had
higher selectivity for Mn2+. M1 was dissolved in DMSO and
diluted in Thomson’s buffer (< 1 % DMSO in buffer, pH 7.4)
for the cell experiments. All experiments and imaging were
performed on live HEK 293T cells. The probe readily entered
cells within 15 min of incubation, as shown in the confocal
images in figure 3. Cells treated with MnCl2 for 1h showed
significant fluorescence enhancement when compared to
control untreated cells (Figures 3 a, b). To test whether the
6
S. Bakthavatsalam, S. Das Sharma, M. Sonawane, V. Thirumalai and A.
Datta, Dis Model Mech., 2014, 7, 1239ꢀ1251.
7 C. E. BlabyꢀHaas and S. S. Merchant, J. Biol. Chem., 2014, 289, 28129ꢀ
28136.
8 K. P. Carter, A. M. Young and A. E. Palmer, Chem. Rev., 2014, 114, 4564ꢀ
4601.
9 E. M. Nolan and S. J. Lippard, Acc. Chem. Res., 2009, 42, 193ꢀ203.
10 Y. Xu, L. Xiao, S. Sun, Z. Pei, Y. Pei and Y. Pang, Chem. Commun.,
2014, 50, 7514ꢀ7516.
fluorescence increase was due to Mn2+, tetrakisꢀ(2ꢀ 11 S. Pal, N. Chatterjee and P. K. Bharadwaj, RSC Adv., 2014, 4, 26585ꢀ
26620.
pyridylmethyl)ethyleneꢀdiamine (TPEN)
a
cellꢀpermeable
12 M. Li, H. Ge, R. L. Arrowsmith, V. Mirabello, S. W. Botchway, W. Zhu,
S. I. Pascu and T. D. James, Chem. Commun, 2014, 50, 11806ꢀ
11809.
13 Y. H. Lee, N. Park, Y. B. Park, Y. J. Hwang, C. Kang and J. S. Kim,
Chem. Commun., 2014, 50, 3197ꢀ3200.
14 M. L. Giuffrida, E. Rizzarelli, G. A. Tomaselli, C. Satriano and G. Trusso
Sfrazzetto, Chem. Commun. , 2014, 50, 9835ꢀ9838.
15 A. Balamurugan, V. Kumar and M. Jayakannan, Chem. Commun., 2014,
50, 842ꢀ845.
16 C. J. Fahrni, Curr. Opin. Chem. Biol., 2013, 17, 656ꢀ662.
17 Y. Chen, C. Zhu, J. Cen, J. Li, W. He, Y. Jiao and Z. Guo, Chem.
Commun., 2013, 49, 7632ꢀ7634.
18 Z. Xu, X. Liu, J. Pan and D. R. Spring, Chem. Commun., 2012, 48, 4764ꢀ
4766.
19 A. M. Kim, S. Vogt, T. V. O'Halloran and T. K. Woodruff, Nat. Chem.
Biol., 2010, 6, 674ꢀ681.
20 Y. You, E. Tomat, K. Hwang, T. Atanasijevic, W. Nam, A. P. Jasanoff
and S. J. Lippard, Chem. Commun., 2010, 46, 4139ꢀ4141.
21 E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008, 108,
1517ꢀ1549.
22 J. Liu and Y. Lu, J. Am. Chem. Soc., 2007, 129, 9838ꢀ9839.
23 J. L. Bricks, A. Kovalchuk, C. Trieflinger, M. Nofz, M. Buschel, A. I.
Tolmachev, J. Daub and K. Rurack, J. Am. Chem. Soc., 2005, 127,
13522ꢀ13529.
chelator of divalent metal ions was added to the Mnꢀtreated
cells. The emission intensity clearly decreased (Figure 3d)
proving that the increase in emission intensity was a Mn2+
selective response. The fluorescence intensity in control cells
also decreased upon TPEN treatment indicating that the sensor
would also be able to detect labile Mn2+ under physiological
conditions (Figures 3c).
Finally, to check the in cellulo localization of the sensors
we performed coꢀlocalization experiments with Nile Red, a
cellꢀpermeable lipophilic dye known to bind to lipid
membranes.38 The confocal images indicate that M1 coꢀ
localizes with Nile Red (Figure 3eꢀg), implying that the sensor
targets lipid vesicles and senses Mn2+ in cellular bodies with
high lipidꢀcontent.
In this work we have successfully shown that pentaꢀaza
macrocycles can be optimally decorated with oxygen
containing arms to develop selective ‘turnꢀon’ fluorescent
sensors for Mn2+. The sensor M1 shows significant increase in
fluorescence intensity in Mn2+ꢀloaded cells and can detect Mn2+
within lipid rich entities. Selective detection of Mn2+ is
distinctly confirmed by reduction in intensity upon TPEN
24 M. D. Shults, D. A. Pearce and B. Imperiali, J. Am. Chem. Soc., 2003,
125, 10591ꢀ10597.
25 X. Mao, H. Su, D. Tian, H. Li and R. Yang, ACS Appl. Mater. Interfaces,
2013, 5, 592ꢀ597.
treatment in Mn2+ꢀtreated cells. Recent microꢀSXRF and 26 K. Dutta, R. C. Deka and D. K. Das, J. Fluorescence, 2013, 23, 1173ꢀ
XANES studies on Mn2+ localization within the cell indicate
1178.
27 F. Gruppi, J. Liang, B. B. Bartelle, M. Royzen, D. H. Turnbull and J. W.
Canary, Chem. Commun. , 2012, 48, 10778ꢀ10780.
28 I. Kaya, M. Yildirim and M. Kamaci, Synth. Met., 2011, 161, 2036ꢀ2040.
Mn2+ accumulation in the Golgi apparatus with possible
removal of excess Mn2+ via exocytosis through lipid vesicles.39
29 J. Liang and J. W. Canary, Angew. Chem. Int. Ed., 2010, 49, 7710ꢀ7713.
30 Y. J. Lee, C. Lim, H. Suh, E. J. Song and C. Kim, Sens. Actuators, B,
2014, 201, 535ꢀ544.
31 B. R. Jali, K. Masud and J. B. Baruah, Polyhedron, 2013, 51, 75ꢀ81.
32 H. Irving and R. J. P. Williams, J. Am. Chem. Soc., 1953, 3192ꢀ3210.
33 D. Lieb, I. Kenkell, J. L. Miljkovic, D. Moldenhauer, N. Weber, M. R.
In the future we plan to use our modular synthetic strategy of
attaching arms to pentaꢀaza macrocycles to modify and target
our sensors to the Golgi, a major site implicated in Mn2+
homeostasis.40
Filipovic, F. Groehn and I. IvanovicꢀBurmazovic, Inorg. Chem.,
2014, 53, 1009ꢀ1020.
34 D. Salvemini, D. P. Riley and S. Cuzzocrea, Nat. Rev. Drug Discov.,
2002, 1, 367ꢀ374.
35 L. A. Ba, M. Doering, T. Burkholz and C. Jacob, Metallomics, 2009, 1,
292ꢀ311.
A.D. acknowledges support from Department of Atomic
Energy, India, The authors acknowledge Prof. Sudipta Maiti
and the Biophotonics group, TIFR, for help with cell culture
and confocal imaging; NMR Facility, TIFR, India; and Mass
laboratory, Chemistry Department, I.I.T. Bombay, India.
36 R. A. Bozym, R. B. Thompson, A. K. Stoddard and C. A. Fierke, ACS
Chem. Biol., 2006, 1, 103ꢀ111.
37 C. E. Outten and T. V. O'Halloran, Science, 2001, 292, 2488ꢀ2492.
38 P. Greenspan, E. P. Mayer and S. D. Fowler, J. Cell Biol., 1985, 100,
965ꢀ973.
39 A. Carmona, S. Roudeau, L. Perrin, G. Veronesi and R. Ortega,
Metallomics, 2014, 6, 822ꢀ832.
Notes and references
1
2
K. Barnese, E. B. Gralla, J. S. Valentine and D. E. Cabelli, Proc. Natl.
Acad. Sci. U.S.A., 2012, 109, 6892ꢀ6897.
R. L. McNaughton, A. R. Reddi, M. H. S. Clement, A. Sharma, K.
Barnese, L. Rosenfeld, E. B. Gralla, J. S. Valentine, V. C. Culotta
and B. M. Hoffman, Proc. Natl. Acad. Sci. U.S.A., 2010, 107,
15335ꢀ15339.
40 S. Mukhopadhyay and A. D. Linstedt, Proc. Natl. Acad. Sci. U.S.A.,
2011, 108, 858ꢀ863.
3 A. R. Reddi, L. T. Jensen and V. C. Culotta, Chem. Rev., 2009, 109, 4722ꢀ
4732.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012