Please do not adjust margins
Physical Chemistry Chemical Physics
Page 9 of 10
DOI: 10.1039/C7CP07682G
Journal Name
ARTICLE
P. Gao, M. Grätzel, M. K. Nazeeruddin, K. Zheng, A. Yartsev,
T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J.
P. Wolf, V. Sundstrom, R. Mosca, D. G. Schlom, J. W. Ager
and R. Ramesh, Energy Environ. Sci., 2014, 7, 2448–2463.
S. D. Stranks and H. J. Snaith, Nat. Nanotechnol., 2015, 10,
391–402.
and ethanol before undergoing 10 minutes of O2 plasma
treatment.
A compact TiO2 layer was deposited on the
glass substrates through spray pyrolysis of a 0.2M solution of
titanium diisopropoxide bis(acetylacetonate) in isopropanol at
450 °C.
Upon
cooling,
a
mesoporous
layer of
H. Oga, A. Saeki, Y. Ogomi, S. Hayase and S. Seki, J. Am.
Chem. Soc., 2014, 136, 13818–13825.
M. Stringer, J. E. Bishop, J. A. Smith, D. K. Mohamad, A.
Parnell, V. Kumar, C. Rodenburg and D. G. Lidzey, J. Mater.
Chem. A, 2017, 30, 1410.
N. Yaghoobi Nia, F. Matteocci, L. Cina and A. Di Carlo,
ChemSusChem, 2017, 1–10.
W. Sun, S. Ye, H. Rao, Y. Li, Z. Liu, L. Xiao, Z. Chen, Z. Bian and
C. Huang, Nanoscale, 2016, 8, 15954–15960.
C. Zuo and L. Ding, Small, 2015, 11, 5528–5532.
S. Ito, in Organic-Inorganic Halide Perovskite Photovoltaics,
Springer International Publishing, Cham, 2016, pp. 343–366.
U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J.
Salbeck, H. Spreitzer and M. Grätzel, Nature, 1998, 395, 583–
585.
H. Wang, A. D. Sheikh, Q. Feng, F. Li, Y. Chen, W. Yu, E.
Alarousu, C. Ma, M. A. Haque, D. Shi, Z. S. Wang, O. F.
Mohammed, O. M. Bakr and T. Wu, ACS Photonics, 2015, 2,
849–855.
TiO2 nanoparticles was spin-coated from a 2:7wt suspension of
Dyesol 30NR-D paste in ethanol (4,500rpm for 30 seconds),
followed by sintering at 550°C for 30 minutes.
A
CH3NH3PbI3 perovskite precursor solution was prepared by
dissolving 576mg PbI2, and 199 mg CH3NH3I in a 4:1 vol
solution of DMF:DMSO. 100 µl of the perovskite precursor
solution was deposited onto the TiO2 films and spin-coated at
4,000rpm for 30 seconds, with 200 µl of ethyl acetate
dripped onto the spinning substrate 10 seconds prior to the
end of the spin-coating process. Perovskite films were
annealed at 100°C for 10 minutes. In the case of the Spiro-
OMeTAD HTM, a 85mg/ml solution of Spiro-OMeTAD in
chlorobenzene
was
prepared
with
dopants including bis(trifluoromethylsulfonyl)imide
lithium
salt (Li-TFSI) (20ul/ml of a 520mg/ml solution in acetonitrile),
4-tert-butylpyridine (tBP, 30ul/ml)) and tris(2-(1H-pyrazol-1-
M. Daskeviciene, S. Paek, Z. Wang, T. Malinauskas, G.
Jokubauskaite, K. Rakstys, K. T. Cho, A. Magomedov, V.
Jankauskas, S. Ahmad, H. J. Snaith, V. Getautis and M. K.
Nazeeruddin, Nano Energy, 2017, 32, 551–557.
S. Lv, Y. Song, J. Xiao, L. Zhu, J. Shi, H. Wei, Y. Xu, J. Dong, X.
Xu, S. Wang, Y. Xiao, Y. Luo, D. Li, X. Li and Q. Meng,
Electrochim. Acta, 2015, 182, 733–741.
P. Agarwala, D. Kabra, F. Giordano, J.-P. Correa-Baena, M.
Saliba, P. Gao, T. Matsui, J. Ko, S. M. Zakeeruddin, K. H.
Dahmen, M. K. Nazeeruddin, K.-L. Liau, H.-C. Chung, C.-Y. Liu,
S.-S. Sun and T. J. Chow, J. Mater. Chem. A, 2017, 5, 1348–
1373.
yl)-4-tert-butylpyridine)- cobalt(III)
tris(bis(trifluorome-
thylsulfonyl)imide) (FK209, 10 ul/ml of a 300 mg/ml solution in
acetonitrile). For other HTMs, the same weight of material was
dissolved in chlorobenzene with 2 times the volume of
additives included. The higher dopant concentration used for
the DATPA HTMs was found to be beneficial due to the deeper
HOMO level of these compared with Spiro-OMeTAD. The
HTM solution was spin-coated onto perovskite films at
4,000rpm for 30 seconds before 80nm thick Au contacts were
thermally evaporated onto devices.
H. Choi, S. Park, S. Paek, P. Ekanayake, M. K. Nazeeruddin
and J. Ko, J. Mater. Chem. A, 2014, 2, 19136–19140.
P. Ganesan, K. Fu, P. Gao, I. Raabe, K. Schenk, R. Scopelliti, J.
Luo, L. H. Wong, M. Grätzel and M. K. Nazeeruddin, Energy
Environ. Sci., 2015, 8, 1986–1991.
M.-H. Li, C.-W. Hsu, P.-S. Shen, H.-M. Cheng, Y. Chi, P. Chen
and T.-F. Guo, Chem. Commun. (Camb)., 2015, 51, 15518–21.
M. Maciejczyk, A. Ivaturi and N. Robertson, J. Mater. Chem.
A, 2016, 4, 1–22.
K. Rakstys, A. Abate, M. I. Dar, P. Gao, V. Jankauskas, G.
Jacopin, E. Kamarauskas, S. Kazim, S. Ahmad, M. Grätzel and
M. K. Nazeeruddin, J. Am. Chem. Soc., 2015, 137, 16172–8.
F. J. Ramos, K. Rakstys, S. Kazim, M. Grätzel, M. K.
Nazeeruddin and S. Ahmad, RSC Adv., 2015, 5, 53426–53432.
H. Nishimura, N. Ishida, A. Shimazaki, A. Wakamiya, A. Saeki,
L. T. Scott and Y. Murata, J. Am. Chem. Soc., 2015, 137,
jacs.5b11008.
Current-voltage measurements were performed using a AAA-
rated solar simulator (Oriel Sol3A) calibrated against a KG5-
filtered reference diode (Oriel 91150-KG5). Solar cells were
masked to 0.1 cm2 and scanned both from forward to reverse
bias and vice versa at 100 mV/s.
Conflicts of Interest
There are no conflicts of interest to declare.
Acknowledgements
RFP thanks CONACYT, Mexico for a PhD studentship. We thank
EPSRC EP/H040218/1; EP/M023532/1 for financial support.
P. Dhingra, P. Singh, P. J. S. Rana, A. Garg and P. Kar, Energy
Technol., 2016, 4, 891–938.
L. Calió, S. Kazim, M. Grätzel and S. Ahmad, Angew. Chemie
Int. Ed., 2016, 55, 14522–14545.
M. Thelakkat, Macromol. Mater. Eng., 2002, 287, 442.
M. Planells, A. Abate, D. J. Hollman, S. D. Stranks, V. Bharti, J.
Gaur, D. Mohanty, S. Chand, H. J. Snaith and N. Robertson, J.
Mater. Chem. A, 2013, 1, 6949.
Notes and references
A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am.
Chem. Soc., 2009, 131, 6050–6051.
Y. Zhou and K. Zhu, ACS Energy Lett., 2016, 1, 64–67.
D. Bi, L. Yang, G. Boschloo, A. Hagfeldt and E. M. J.
Johansson, J. Phys. Chem. Lett., 2013, 4, 1532–1536.
NREL,
efficiency-chart.png
(4348×2415),
chart.png, (accessed 21 July 2017).
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins