Enantioselective Synthesis of Cyclopentadienes by Gold(I)-Catalyzed Cyclization of 1,3-Dien-5-ynes
[6] a) A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am.
Chem. Soc. 2000, 122, 11553–11554; b) L. Zhang, J.
Sun, S. A. Kozmin, Adv. Synth. Catal. 2006, 348, 2271–
2296; c) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–
403; d) E. Jimꢅnez-NfflÇez, A. Echavarren, Chem. Rev.
2008, 108, 3326–3350; e) A. Fürstner, Chem. Soc. Rev.
2009, 38, 3208–3221. Other revisions on transition-
metal catalyzed cycloisomerization reactions, see: f) V.
Michelet, P. Y. Toullec, J.-P. GenÞt, Angew. Chem.
2008, 120, 4338–4386; Angew. Chem. Int. Ed. 2008, 47,
4268–4315; g) S. I. Lee, N. Chatani, Chem. Commun.
2009, 371–384; h) M. Rudolph, A. S. K. Hashmi, Chem.
Soc. Rev. 2012, 41, 2448–2462.
[20] Water was also checked as nucleophile by using a 4:2:1
CH2Cl2/acetone/H2O ternary mixture that gave only
30% of the expected alcohol.
[21] Carbon-centered nucleophiles such as allyltrimethylsi-
lane, acetylacetone or electron-rich aromatic com-
pounds, as well as acetic acid, do not participate in the
reaction, benzene 2a being the obtained product.
[22] An alkyl (n-Bu) substituent at R1 position gave rise to
a mixture of products including the corresponding ben-
zene derivative 2. In pure MeOH as solvent decompo-
sition was observed.
[23] A. S. K. Hashmi, Angew. Chem. 2010, 122, 5360–5369;
Angew. Chem. Int. Ed. 2010, 49, 5232–5241.
[7] A. K. Buzas, F. M. Istrate, F. Gagosz, Angew. Chem.
2007, 119, 1159–1162; Angew. Chem. Int. Ed. 2007, 46,
1141–1144.
[24] A. S. K. Hashmi, Gold Bull. 2009, 42, 275–279.
[25] a) M. P. MuÇoz, J. Adrio, J. C. Carretero, A. M. Echa-
varren, Organometallics 2005, 24, 1293–1300; b) C.-M.
Chao, M. R. Vitale, P. Y. Toullec, J.-P. GenÞt, V. Mi-
chelet, Chem. Eur. J. 2009, 15, 1319–1323; c) C.-M.
Chao, D. Beltrami, P. Y. Toullec, V. Michelet, Chem.
Commun. 2009, 6988–6990; d) A. S. K. Hashmi, M.
[8] a) H. Funami, H. Kusama, N. Iwasawa, Angew. Chem.
2007, 119, 927–929; Angew. Chem. Int. Ed. 2007, 46,
909–911; b) J. H. Lee, F. D. Toste, Angew. Chem. 2007,
119, 930–932; Angew. Chem. Int. Ed. 2007, 46, 912–914.
[9] E. Rettenmeier, A. M. Schuster, M. Rudolph, F. Ro-
minger, C. A. Gade, A. S. K. Hashmi, Angew. Chem.
2013, 125, 5993–5997; Angew. Chem. Int. Ed. 2013, 52,
5880–5884.
[10] a) R. Sanz, D. Miguel, F. Rodrꢁguez, Angew. Chem.
2008, 120, 7464–7467; Angew. Chem. Int. Ed. 2008, 47,
7354–7357; b) R. Sanz, D. Miguel, M. Gohain, P.
Garcꢁa-Garcꢁa, M. A. Fernꢀndez-Rodrꢁguez, A. Gon-
zꢀlez-Pꢅrez, O. Nieto-Faza, A. R. de Lera, F. Rodrꢁ-
guez, Chem. Eur. J. 2010, 16, 9818–9828; c) E. ꢂlvarez,
D. Miguel, P. Garcꢁa-Garcꢁa, M. A. Fernꢀndez-Rodrꢁ-
guez, F. Rodrꢁguez, R. Sanz, Synthesis 2012, 1874–1884.
[11] P. Garcꢁa-Garcꢁa, A. Martꢁnez, A. M. Sanjuꢀn, M. A.
Fernꢀndez-Rodrꢁguez, R. Sanz, Org. Lett. 2011, 13,
4970–4973.
´
Hamzic, F. Rominger, J. W. Bats, Chem. Eur. J. 2009,
15, 13318–13322; e) S. G. Sethofer, T. Mayer, F. D.
Toste, J. Am. Chem. Soc. 2010, 132, 8276–8278; f) F.
Liu, D. Qian, L. Li, X. Zhao, J. Zhang, Angew. Chem.
2010, 122, 6819–6822; Angew. Chem. Int. Ed. 2010, 49,
6669–6672; g) A. K. Mourad, J. Leutzow, C. Czekelius,
Angew. Chem. 2012, 124, 11311–11314; Angew. Chem.
Int. Ed. 2012, 51, 11149–11152; h) J.-F. Brazeu, S.
Zhang, I. Colomer, B. K. Corkey, F. D. Toste, J. Am.
Chem. Soc. 2012, 134, 2742–2749. See also ref.[12] For
recent reviews, see: i) A. Marinetti, H. Jullien, A. Voi-
turiez, Chem. Soc. Rev. 2012, 41, 4884–4908; j) I. D. G.
Watson, F. D. Toste, Chem. Sci. 2012, 3, 2899–2919.
[26] (S)-DM-SEGPHOS gave similar results. See the Sup-
porting Information for details.
[12] a) A. Martꢁnez, P. Garcꢁa-Garcꢁa, M. A. Fernꢀndez-Ro-
drꢁguez, F. Rodrꢁguez, R. Sanz, Angew. Chem. 2010,
122, 4737–4741; Angew. Chem. Int. Ed. 2010, 49, 4633–
4637; b) P. Garcꢁa-Garcꢁa, M. A. Rashid, A. M.
Sanjuꢀn, M. A. Fernꢀndez-Rodrꢁguez, R. Sanz, Org.
Lett. 2012, 14, 4778–4781.
[27] Reaction of 1g was carried out in neat MeOH to mini-
mize the formation of 4g and 2g. Although the lower ee
obtained could be due to the higher temperature
needed as well as to a solvent effect (78% ee was ob-
tained for 1a in MeOH), the substrate moiety could
also play an important role.
[13] P. Garcꢁa-Garcꢁa, M. A. Fernꢀndez-Rodrꢁguez, E. Agui-
lar, Angew. Chem. 2009, 121, 5642–5645; Angew. Chem.
Int. Ed. 2009, 48, 5534–5537.
[28] Determined by X-ray analysis of cycloadduct 13ad. The
configurations of the remaining cyclopentadienes were
assigned by analogy. Structural parameters for 13ad
have been deposited with The Cambridge Crystallo-
graphic Data Centre under CCDC 929962. These data
can be obtained free of charge from The Cambridge
data_request/cif.
[29] W. Adam, U. Jacob, M. Prein, J. Chem. Soc. Chem.
Commun. 1995, 839–840, and references cited therein.
[30] CCDC 929963 (13ag) contains the supplementary crys-
tallographic data for this compound. These data can be
obtained free of charge from The Cambridge Crystallo-
quest/cif.
[14] J.-J. Lian, C.-C. Lin, H.-K. Chang, P.-C. Chen, R.-S.
Liu, J. Am. Chem. Soc. 2006, 128, 9661–9667. The gold-
catalyzed oxidative cyclization of 1,3-dien-5-ynes af-
fords cyclopentenone derivatives, see: D. Vasu, H.-H.
Hung, S. Bhunia, S. A. Gawade, A. Das, R.-S. Liu,
Angew. Chem. 2011, 50, 6911–6914; Angew. Chem. Int.
Ed. 2011, 123, 7043–7046.
[15] For the preparation of starting dienynes 1 see ref.[11]
[16] No reaction was observed with other metal complexes
such as PtCl2 or AgSbF6.
[17] N. Mꢅzailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7,
4133–4136.
[18] Triene 4a, probably derived from a competitive elimi-
nation pathway, was obtained in variable amounts with
different catalysts. See the Supporting Information for
details about optimization of the reaction conditions.
[19] The use of 1.5 equiv. of MeOH gave rise to a ca. 10:1
mixture of 3a:4a.
[31] Small amounts of the cycloadducts derived from loss of
MeOH were also obtained probably due to the pres-
ence of the gold catalyst.
[32] For other examples of gold-catalyzed cascade cycloiso-
merization/Diels–Alder reactions, see: a) A. S. K.
Hashmi, M. Rudolph, J. P. Weyrauch, M. Wçlfle, W
Adv. Synth. Catal. 0000, 000, 0 – 0
ꢃ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
7
ÞÞ
These are not the final page numbers!