10.1002/adsc.201801263
Advanced Synthesis & Catalysis
In conclusion, using the easily prepared salan
Niu, H. Yi, A. W. Lei, Asian J. Org. Chem. 2017, 6,
386-396; k) X. Zhang, K. P. Rakesh, L. Ravindar, H.
Qin, Green Chem. 2018, 20, 4790-4833; l) J. Y. Yang,
D. T. Xie, H. Y. Zhou, S. W. Chen, C. D. Huo, Z. Lia,
Org. Chem. Front. 2018, 5, 1325-1329.
ligand as a stereoselective controller and green
sustainable air as the oxidant, we have developed a
practical, efficient, and safe protocol for visible light-
induced salan-copper(II)-catalyzed asymmetric α-
hydroxylation of β-keto esters. Cyclic substrates were
converted to the corresponding α-hydroxyl products
with good to excellent yields and enantioselectivities
(up to 95% yield, 96% ee), particularly for the
substrates with smaller ester groups which until now
were difficult to achieve. Tetraphenylporphyrin was
introduced as the photosensitizer to produce singlet
oxygen from unreactive triplet oxygen under visible
light irradiation to participate in the reactions. The
importance of this transformation was highlighted
through the synthesis of the key intermediate of (S)-
indoxacarb. Further investigations of the synthetic
application of this transformation and the exploration
of the scope of α-hydroxylation are underway in our
laboratory.
[2] a) H. Sunden, M. Engqvist, J. Casas, I. Ibrahem, A.
Córdova, Angew. Chem. 2004, 116, 6694-6697; b) A.
Córdova, H. Sundén, M. Engqvist, I. Ibrahem, J. Casas,
J. Am. Chem. Soc. 2004, 126, 8914-8915; c) I. Ibrahem,
G. Zhao, H. Sundén, A. Córdova, Tetrahedron Lett.
2006, 47, 4659-4663; d) C. Wiegand, E. Herdtweck, T.
Bach, Chem. Commun., 2012, 48, 10195-10197.
[3] a) M. Lian, Z. Li, Y. Cai, Q. Meng, Z. Gao, Chem.
Asian J. 2012, 7, 2019-2023; b) X. Tang, S. Feng, Y.
Wang, F. Yan, Z. Zheng, J. Zhao, Y. Wu, H. Yin, G.
Liu, Q. Meng, Tetrahedron 2018, 74, 3624-3633; c) W.
Ding, L. Lu, Q. Zhou, Y. Wei, J. Chen, W. Xiao, J. Am.
Chem. Soc. 2017, 139, 63-66.
[4] H. J. Federsel, Nat. Rev. Drug Discovery 2005, 4, 685-
697.
Experimental Section
[5] a) N. Mitsuru, F. Yoshie, N. Hiroshi, M. Akihiko, H.
Shuichi, Chem. Lett. 1980, 1243-1246; b) J.
Christoffers, T. Werner, W. Frey, A. Baro, Chem. Eur.
J. 2004, 10, 1042-1045.
A dried 10 mL Schlenk tube equipped with a magnetic stir
bar was charged with Cu(OTf)2 (7.2 mg, 0.02 mmol), salan
ligand L4 (14.24 mg, 0.022 mmol) and toluene 2 mL. The
mixture was stirred at 50 °C for 30 min in the dark and N2
atmosphere. Then, the mixture was cooled to -15 °C. Then,
the methyl 5-chloro-1-oxo-2,3-dihyhydro-1H-indene-2-
carboxylate (44.9 mg, 0.2 mmol), and TPP (3.1 mg, 0.005
mmol) were added while air (dried by 4 Å MS) was slowly
injected via air pump into the reaction flask and the
reaction mixture was stirred under irradiation of a 25 W
white compact fluorescent lamp (distance 3 cm). The
resulting solution was stirred at -15 °C for 15 h. After the
reaction was completed the solution of the crude product
was concentrated in vacuo, and the residue was purified by
column chromatography on a silica gel (petroleum
ether/ethyl acetate = 5/1) to afford the product 2a (45.2 mg,
94% yield, 96% ee) as a white solid.
[6] K. D. Wellington, R. C. Cambie, P. S. Rutledge, P. R.
Bergquist, J. Nat. Prod. 2000, 63, 79-85.
[7] G. Olack, H. Morrison, J. Org. Chem. 1991, 56, 4969-
4971.
[8] S. F. McCann, G. D. Annis, R. Shapiro, D. W.
Piotrowski, G. P. Lahm, J. K. Long, K. C. Lee, M. M.
Hughes, B. J. Myers, S. M. Griswold, B. M. Reeves, R.
W. March, P. L. Sharpe, P. Lowder, W. E. Barnette, K.
D. Wing, Pest Manage. Sci. 2001, 57, 153-164.
[9] a) B. Gong, Q. Meng, T. Su, M. Lian, Q. Wang, Z. Gao,
Synlett 2009, 16, 2659-2662; b) T. Ishimaru, N. Shibata,
J. Nagai, S. Nakamura, T. Toru, S. Kanemasa, J. Am.
Chem. Soc. 2006, 128, 16488-16489.
Acknowledgements
We would like to thank the National Natural Science Foundation
of China (Nos. 21476041, U1608224, 61633006) and the State
Key Laboratory of Fine Chemicals for their support.
[10] F. Yang, J. Zhao, X. Tang, G. Zhou, W. Song, Q.
Meng, Org. Lett. 2017, 19, 448-451.
[11] a) H. Hou, X. Shen, C. Wang, L. Zhang, P. Röse, L.
Chen, K. Hlarms, M. Marsch, G. Hilt, E. Meggers,
Nature 2014, 515, 100-103; b) J. C. Tellis, D. N.
Primer, G. A. Molander, Science 2014, 345, 433-436.
References
[1] a) M. Yan, J. C. Lo, J. T. Edwards, P. S. Baran, J. Am.
Chem. Soc., 2016, 138, 12692-12714; b) T. F. Niu, D.
Y. Jiang, S. Y. Li, B. Q. Ni, L. Wang, Chem. Commun.
2016, 52, 13105-13108; c) L. Zhang, H. Yi, J. Wang, A.
Lei, Green Chem. 2016, 18, 5122-5126; d) Mîhldorf.
B.; Wolf. R. Angew. Chem. Int. Ed. 2016, 55, 427-430;
e) L. Ren, M. M. Yang, C. H. Tung, L. Z. Wu, H. Cong,
ACS Catal. 2017, 7, 8134-8138; f) A. Sagadevan, V. P.
Charpe, K. C. Hwang, J. Am. Chem. Soc. 2017, 139,
2896-2899; g) K. Wang, L. G. Meng, Q. Zhang, L.
Wang, Green Chem. 2016, 18, 2864-2870; h) S. K.
Pagire, P. Kreitmeuer, O. Reiser, Angew. Chem. Int. Ed.
2017, 56, 10928-10932; i) Y. Ding, W. Zhang, H. Li, Y.
Meng, T. Zhang, Q. Y. Chen, C. Zhu, Green Chem.
2017, 19, 2941-2944; j) C. L. Bian, A. K. Singh, L. B.
[12] a) S. K. Silverman, C. S. Foote, J. Am. Chem. Soc.
1991, 113, 7672; b) Y. Liang, N. Jiao, Acc. Chem. Res.
2017, 50, 1640-1653.
[13] A. A. Ghograre, A. Greer, Chem. Rev. 2016, 116,
9994-10034.
[14] H. Miyamura, S. Kobayashi, Chem. Lett. 2012, 41,
976-978.
[15] a) P. H. Dussault, K. R. Woller, J. Am. Chem. Soc.
1997, 119, 3824-3825; b) A. G. Davies, J. Chem. Res.
2009, 2009, 533-544.
5
This article is protected by copyright. All rights reserved.