1
66
Z.D. Petrovi ´c et al. / Bioorganic Chemistry 37 (2009) 162–166
[
[
10] N.M. Milovic, N.M. Kostic, in: A. Sigel, H. Sigel (Eds.), Metal Ions in Biological
Systems, Palladium(II) and Platinum(II) Complexes as Synthetic Peptidases,
XXXVIII, Marcel Dekker Inc., 2001, pp. 145–186 (refs. therein Z.D.).
11] Petrovi c´ , M.I. Ðuran, F.W. Heinemann, S. Rajkovi c´ , S.R. Trifunovi c´ , Bioorg.
Chem. 34 (2006) 225–234.
[
12] Z.D. Petrovi c´ , D. Hadjipavlou-Litina, V.P. Petrovi c´ , J. Mol. Liq. 144 (2009) 55–58.
[13] R. Mital, M.G. Shah, S.T. Srivastava, K.R. Bhattacharya, Life Sci. 50 (1992) 781–
790.
[
[
[
14] M.M. Harding, V.G. Long, Curr. Med. Chem. 4 (1997) 405–420.
15] J. Nacsa, L. Nagy, J. Molnar, Anticancer Res. 18 (1998) 1373–1376.
16] J. Lassig, M. Shultz, M. Gooch, B. Evans, J. Woodward, Arch. Biochem. Biophys.
322 (1995) 119–126.
[
[
[
17] Q. Chen, L.J. Stevens, Arc. Biochem. Biophys. 284 (1991) 422–430.
18] I. Giuliani, A. Baeza-Squiban, F. Marano, Toxicol. In Vitro 11 (1997) 695–702.
19] H. Kuhn, Lipoxygenases, in: F. Marks, G. Fustenberger (Eds.), Prostaglandins,
Leukotrienes and Other Eicosanoids, Wiley-VCH, Weinheim, 1999, pp. 109–
141.
[
[
20] E. Pontiki, D. Hadjipavlou-Litina, Curr. Enz. Inh. 1 (2005) 309–328.
21] I. Ahmad, S.A. Nawaz, N. Afza, A. Malik, I. Fatima, S.B. Khan, M. Ahmad, M.I.
Choudhary, Chem. Pharm. Bull. 53 (2005) 907–910.
Fig. 3. Optimized geometry of complex 2 with delineated LUMO map [52,53].
[
[
22] D. Steinhilber, Curr. Med. Chem. 6 (1999) 71–85.
otide (NADH) and air-oxygen. Generation of the superoxide radical
anion is a first step of the spectrophotometric method that has
been applied to the measurement of the antioxidant activity of
investigated complexes. The complexes showed very high scaveng-
ing activity which was concentration dependent. Diethanolamine,
as precursor of the investigated complexes, exhibited lower activ-
ity, Table 1. The complexes 1 and 2, as well as DEA, are very active
and more potent than the reference compound caffeic acid.
23] S. Ylä-Herttuala, E.M. Rosenfeld, S. Parthasarathy, K.C. Glass, E. Sigal, L.J.
Witztum, D. Steinberg, Proc. Natl. Acad. Sci. USA 87 (1990) 6959–6963.
24] Y.X. Ding, G.W. Tong, E.T. Adrian, Pancreatology 4 (2001) 291–296.
25] M. Maccarrone, G.A. Veldink, J.F. G Vliegenthart, A. Finazzi Agro, Lipids 30
[
[
(
1995) 51–54.
[26] S.G. Rival, C.G. Boeriu, H.J. Wichers, J. Agric. Food Chem. 49 (2001) 295–302.
[
[
27] M. Maccarrone, A. Baroni, A. Finazzi Agro, Arch. Biochem. Biophys. 356 (1998)
5–40.
28] W. Chamulitrat, R.P. Mason, D. Riendeau, J. Biol. Chem. 267 (1992) 9574–9579.
3
[29] T. Kuninori, J. Nishiyama, M. Shirakawa, A. Shimoyama, Biochim. Biophys. Acta
125 (1) (1992) 49–55.
30] M.J. Nelson, D.G. Batt, J.S. Thompson, S.W. Wright, J. Biol. Chem. 266 (1991)
225–8229.
1
[
5
. Concluding remarks
8
[
[
[
[
31] G.F.J. Vliegenthart, A.G. Veldink, Free Radicals Biol. (1982) 29–64.
32] A.G. Veldink, G.F.J. Vlegenthart, Stud. Nat. Products Chem. 9 (1991) 559–589.
33] T.J. Ha, I. Kubo, J. Agric. Food Chem. 55 (2007) 446–451.
34] M. Wladek, S. Janusz, B. T Jeffrey, O. Zbyszek, A. Bernard, Biochemistry 32
(1993) 6320–6323.
2
The reaction between PdCl and diethanolammonium chloride
in a molar ratio of 1:2, leads to the easy formation of the
HDEA] [PdCl ] complex (1), whose structure was optimized by
DFT methods. In order to prove hydrolytic activity, the reaction be-
tween the [HDEA] [PdCl ] complex with MeCOHis-Gly dipeptide at
[
2
4
[
[
35] E. Skrzypczak-Jankun, L.M. Amzel, B.A. Kroa, M.O. Funk, Proteins 29 (1997) 15–
31.
2
4
36] M.J. Frisch, W.G. Trucks, B.H. Schlegel, E.G. Scuseria, A.M. Robb, R.J. Cheeseman,
G.V. Zakrzewski, A.J. Montgomery Jr., E.R. Stratmann, C.J. Burant, S. Dapprich,
M.J. Millam, D.A. Daniels, N.K. Kudin, C.M. Strain, O. Farkas, J. Tomasi, V.
Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, A.G. Petersson, Y.P. Ayala, Q. Cui, K. Morokuma, D.A. Malick, D.K.
Rabuck, K. Raghavachari, B.J. Foresman, J. Cioslowski, V.J. Ortiz, G.A. Baboul,
B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, L.R.
Martin, J.D. Fox, T. Keith, A.M. Al-Laham, Y.C. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, W.M. Wong, L.J. Andres, C.
Gonzalez, M. Head-Gordon, S.E. Replogle, A.J. Pople, Gaussian 03, Revision
E.01-SMP, Gaussian Inc., Pittsburgh, PA, 2003.
pH = 2.0 and 60 °C was done. Selective cleavage of peptide bond
was observed under these experimental conditions during the
course of 43 h. Also, complexes 1 and 2, and DEA, as their precur-
sor, were tested for their in vitro soybean LOX inhibitory and free
radical scavenging activities. UV absorbance-based enzyme assay
and assay with superoxide anion radical were done. The scaveng-
ing activities of the complexes were measured and compared with
those of their precursor and vitamin C. Complex 2 with high anti-
oxidant ability and low IC50 value is considered as agent with po-
tential antioxidant activity, and can therefore be candidate for
further stages of screening in vitro and/or in vivo.
[
[
[
37] D.A. Becke, Phys. Rev. A 38 (1988) 3098–3100.
38] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789.
39] D.A. Becke, J. Chem. Phys. 98 (1993) 5648–5652.
[40] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople A, J. Chem. Phys. 72 (1980) 650–
54.
6
[
[
[
[
[
41] J. P Hay, R.W. Wadt, J. Chem. Phys. 82 (1985) 270–283.
Acknowledgments
42] E.A. Reed, B.R. Weinstock, F. Weinhold, J. Chem. Phys. 83 (1985) 735–746.
43] E.A. Reed, A.L. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899–926.
44] E. Pontiki, D. Hadjipavlou-Litina, Bioorg. Med. Chem. 15 (2007) 5819–5827.
45] D. Panagoulis, E. Pontiki, E. Skeva, C. Raptopoulou, S. Girousi, D. Hadjipavlou-
Litina, C. Dendrinous-Samara, J. Inorg. Biochem. 101 (2007) 623–634.
This work was funded in part by the Ministry of Science and
Environmental Protection of the Republic of Serbia (Project No.
1
42013B).
[
47] W. Minor, J. Steczko, B. Stec, Z. Otwinowski, T.J. Bolin, R. Walter, B. Axelrod,
References
Biochemistry 35 (1996) 10687–10701.
[
48] C.M.J.J. de Groot, A.G. Veldink, G.F.J. Vliegenthart, J. Boldingh, R. Wever, F.B.
Van Gelder, Biochim. Biophys. Acta 377 (1975) 71–79.
[
[
[
[
[
[
[
1] L. Zhu, N.M. Kosti c´ , Inorg. Chem. 31 (1992) 3994–4001.
2] L. Zhu, N.M. Kosti c´ , J. Am. Chem. Soc. 115 (1993) 4566–4570.
3] L. Zhu, N.M. Kosti c´ , Inorg. Chim. Acta 217 (1994) 21–28.
4] E.N. Korneeva, M.V. Ovchinnikov, N.M. Kosti c´ , Inorg. Chim. Acta 243 (1996) 9–13.
5] T.N. Parac, N.M. Kosti c´ , J. Am. Chem. Soc. 118 (1996) 51–58.
6] T.N. Parac, N.M. Kosti c´ , J. Am. Chem. Soc. 118 (1996) 5946–5951.
7] S.U. Milinkovi c´ , T.N. Parac, M.I. Djuran, N.M. Kosti c´ , J. Chem. Soc. Dalton Trans.
[49] L. Lomnitski, R. Bar-Natan, D. Sklan, S. Grossman, Biochim. Biophys. Acta 1167
(1993) 331–338.
[50] F.G. Sud’ina, K.O. Mirzoeva, A.M. Pushkareva, A.G. Korshunova, V.N.
Sumbatyan, D.S. Varfolomeev, FEBS Lett. 329 (1993) 21–24.
[51] J. Van der Zee, E.T. Eling, P.R. Mason, Biochemistry 28 (1989) 8363–8367.
[52] Z.D. Petrovi c´ , S. Markovi c´ , D. Simijonovi c´ , V. Petrovi c´ , Monatsh. Chem. 140
(2009) 371–374.
(
1997) 2771–2776.
8] X. Chen, L. Zhu, H. Yan, X. You, N.M. Kosti c´ , J. Chem. Soc. Dalton Trans. (1996)
653–2658.
9] T.N. Parac, G.M. Ullmann, M.N. Kosti c´ , J. Am. Chem. Soc. 121 (1999) 3127–
135.
[
[
[53] S. Markovi c´ , Z.D. Petrovi c´ , V. Petrovi c´ , Monatsh. Chem. 140 (2009) 171–175.
2
3