Vinci et al.
175
the formation of a Pd-diphosphine species, which increases
the steric bulk around the palladium. Ligand 4, the electron-
poor analogue of 1, afforded the poorest enantioselectivity,
which may partly stem from its ease of dissociation from the
metal centre. However, it is difficult to draw conclusions re-
lating the electronic and steric properties of ligand with the
asymmetric induction observed, not least because there are
probably more than one active catalytic species operating in
the reaction media.
14. K. Kamikawa, A. Tachibana, S. Sugimoto, and M. Uemura.
Org. Lett. 3, 2033 (2001).
1
5. G. Bringmann, M. Breuning, and S. Tasler. Synthesis, 4, 525
1999).
(
1
1
6. G. Bringmann and D. Menche. Acc. Chem. Res. 34, 615 (2001).
7. K.C. Nicolaou, H. Li, C.N.C. Boddy, J.M. Ramanjulu, T.Y.
Yue, S. Natarajan, X.J. Chu, S. Brase, and F. Rubsam. Chem.
Eur. J. 5, 2584 (1999).
1
1
2
2
2
2
2
8. J. Yin and S.L. Buchwald. J. Am. Chem. Soc. 122, 12051
(
2000).
9. M. Genov, A. Almorin, and P. Espinet. Chem. Eur. J. 12, 9346
2006).
Conclusion
(
0. S.D. Walker, T.E. Barder, J.R. Martinelli, and S.L. Buchwald.
This paper presents results on the application of a series
of electronically and sterically varied ferrocenyl ligands to
the Suzuki–Miyaura cross-coupling reactions of aryl bro-
mides and chlorides. Ligands 1 and 2 were proven to gener-
ate very effective catalysts for the coupling of sterically
hindered partners. However, ligand 1 was ineffective in the
coupling of aryl chlorides. For these substrates, including
deactivated ones, the bulkier, electron-rich ligand 2 was nec-
essary. A strong dependence of the catalytic activity on
the L/Pd ratio was observed and this varied with the nature
of the ligand. In contrast with 1, an active catalyst was
formed when 1 equiv. of 2 relative to the palladium was
used, a scenario reminiscent of those observed with other
bulky, electron-rich phosphines (43). The satisfying perfor-
mance of the ligands in terms of reaction rates and substrate
scope could partly be ascribed to the presence of the
oxazaphospholidine moiety, which renders the ligand to be
potentially hemilabile during the catalysis, thereby stabiliz-
ing the active palladium species. These ligands were also
shown to induce enantioselection in the Suzuki coupling re-
action; however, their performance remains to be improved
in this respect.
Angew. Chem. Int. Ed. 43, 1871 (2004).
1. J. Yin, M.P. Rainka, X.X. Zhang, and S.L. Buchwald. J. Am.
Chem. Soc. 124, 1162 (2002).
2. J.P. Wolfe and S.L. Buchwald. Angew. Chem. Int. Ed. 38,
2
413 (1999).
3. J.P. Wolfe, R.A. Sinjer, B.H. Yang, and S.L. Buchwald. J. Am.
Chem. Soc. 121, 9550 (1999).
4. D.W. Old, J.P. Wolfe, and S.L. Buchwald. J. Am. Chem. Soc.
1
20, 9722 (1998).
25. N. Gurbuz, I. Ozdemir, S. Demir, and B. Centinkaya. J. Mol.
Catal. 209, 23 (2004).
26. S.D. Cho, H.K. Kim, H.S. Yim, M.R. Kim, J.K. Lee, J.J. Kim,
and Y.J. Yoond. Tetrahedron, 63, 1345 (2007).
27. T.E. Barder, S.D. Walker, J.R. Martinelli, and S.L. Buchwald.
J. Am. Chem. Soc. 127, 4685 (2005).
2
2
3
8. N. Marion, O. Navarro, J. Mei, E.D. Steven, N.M. Scott, and
S.P. Nolan. J. Am. Chem. Soc. 128, 4101 (2006).
9. K. Billingsley and S.L. Buchwald. J. Am. Chem. Soc. 129,
3
358 (2007).
0. A.N. Cammidge and K.V.L. Crépy. Chem. Commun. 1723,
2000).
(
3
3
1. A.N. Cammidge and K.V.L. Crépy. Tetrahedron, 60, 4377 (2004).
2. A.M. Herrbach, O. Baudoin, D. Guénard and F. Guéritte. J.
Org. Chem. 68, 4897 (2003).
Acknowledgements
3
3
3
3. A.S. Castanet, F. Colobert, P.E Broutin, and M. Obringer. Tet-
rahedron: Asymmetry, 13, 659 (2002).
4. N. Hadei, E.A.B. Kantchev, C.J. O’Brien, and M.G. Organ.
Org. Lett. 7, 1991 (2005).
We gratefully acknowledge Johnson Matthey and the
Fundação para a Ciência e a Tecnologia (SFRH/BD/17262/
2
004 NM) for financial support.
5. R.G. Arrayas, J. Adrio, and J.C. Carretero. Angew. Chem. Int.
Ed. 45, 7674 (2006).
36. F.Y. Kwong, W.H. Lam, C.H. Yeung, K.S. Chan, and A.S.C.
Chan. Chem. Commun. 1922 (2004).
References
1
2
3
. A. Suzuki. Acc. Chem. Res. 15, 178 (1982).
. A. Suzuki. Pure Appl. Chem. 57, 1749 (1985).
. N. Miyaura and A. Suzuki. J. Synth. Org. Chem. Jpn. 46, 848
3
3
3
4
4
7. T.E. Pickett, F.X. Roca, and C.J. Richards. J. Org. Chem. 68,
592 (2003).
2
8. D. Vinci, N. Mateus, X. Wu, F. Hancock, A. Steiner, and J.
Xiao. Org. Lett. 2, 215 (2006).
(
1988).
4
5
. A. Suzuki. Pure Appl. Chem. 63, 419 (1991).
. N. Miyaura and A. Suzuki. J. Synth. Org. Chem. Jpn. 51, 1043
9. Bruker AXS, Inc. SAINT-PLUS. Version 6.45a [computer pro-
gram]. Bruker AXS Inc., Madison, Wisconsin. 2005.
0. Bruker AXS, Inc. SADABS. Version 2007-2 [computer pro-
gram]. Bruker AXS Inc., Madison, Wisconsin. 2007.
1. G.M. Sheldrick. SHELXL-97 [computer program]. University
of Göttingen, Germany. 1997.
2. L.J. Barbour. J. Supramol. Chem. 1, 189 (2001).
3. I.D. Hills, M.R. Netherton, and G.C. Fu. Angew. Chem. Int.
Ed. 42, 5749 (2003).
(
1993).
6
7
8
9
. A. Suzuki. Pure Appl. Chem. 66, 213 (1994).
. N. Miyaura and A. Suzuki. Chem. Rev. 95, 2457 (1995).
. S. Liu and J. Xiao. J. Mol. Catal. A: Chem. 270, 1 (2007).
. G. Bringmann, R. Walter, and R. Weirich. Angew. Chem. Int.
Ed. 29, 977 (1990).
4
4
1
1
0. T.G. Gant and A.I. Meyers. Tetrahedron, 50, 2297 (1994).
1. A.I. Meyers, J.R. Flisak, and R.A. Aitken. J. Am. Chem. Soc.
4
4
4. J.F. Jensen and M. Johannsen. Org. Lett. 5, 3025 (2003).
5. C. Baillie, L. Zhang, and J. Xiao. J. Org. Chem. 69, 7779
1
09, 5446 (1987).
1
1
2. K. Kamikawa and M. Uemera. Synlett, 938 (2000).
3. M. Uemura, A. Daimon, and Y. Hayashi. J. Chem. Soc. Chem.
Commun. 1943 (1995).
(
2004).
©
2008 NRC Canada