is extremely simple, environmentally benign and involves no
catalysts/promoters or coupling reagents. The entire process
involves no chromatographic purification and as a result, the
solvent waste is minimal or even completely eliminated. We
also demonstrated the potential application of this process for
the synthesis of a natural product, which otherwise involves
multiple steps and sensitive reaction conditions using traditional
synthetic methods. An unusual case of chiral self-recognition
was encountered in the case of rac-pipecolic acid. We have shown
how one can think beyond traditional synthetic methods and we
believe that our demonstration will be highly useful for synthetic,
bioorganic, medicinal, and materials chemists, and biologists. As
there are no catalysts or promoters involved, it will be of great
interest to carry out reactions of molecules having a variety of
functional groups. Though a few amino acids resulted in racemic
DKPs, others yielded enantiomerically pure forms indicating
that the process of racemization depends on the stability of
amino acids and the reaction conditions. We strongly believe
that the application of our method offers a unique opportunity
to solve problems in natural product synthesis, chemical biology,
and the design of biomaterials.
9 D. R. Houston, B. Synstad, V. G. H. Eijsink, M. J. R. Stark, I. M.
Eggleston and D. M. F. van Aalten, J. Med. Chem., 2004, 47, 5713–
720.
0 B. Nicholson, G. K. Lloyd, B. R. Miller, M. A. Palladino, Y. Kiso
and Y. Hayashi, Anti-Cancer Drugs, 2006, 17, 25–31.
11 K. E. Klose, J. Bacteriol., 2006, 188, 2025–2026.
2 A. I. Faden, S. M. Knoblach, I. Cernak, L. Fan, R. Vink, G. L.
Araldi, S. T. Fricke, L. R. Bryan and A. P. Kozikowski, J. Cereb.
Blood Flow Metab., 2003, 23, 342–354.
13 M. Teixido, E. Zurita, M. Malakoutikhah, T. Tarrago and E. Giralt,
J. Am. Chem. Soc., 2007, 129, 11802–11813.
4 L. Adler-Abramovich, D. Aronov, P. Beker, M. Yevin, S. Stempler,
5
1
1
1
L. Buzhansky, G. Rosenman and E. Gazit, Nat. Nanotechnol., 2009,
4
, 849–854.
15 (a) P. M. Fischer, J. Pept. Sci., 2003, 9, 9–35; (b) A. S. M. Ressurrelc a˜ o,
R. Delatouche, C. Gennari and U. Plarulli, Eur. J. Org. Chem., 2010,
2
17–228.
1
6 S. Yamada, Y. Yokoyama and T. A. Shioiri, Experientia, 1976, 32,
398–399.
17 M. Bud
eˇ sˇ ´ı nsk y´ , I. Cisarov a´ , J. Podlaha, F. Borremans, J. C. Martins,
M. Waroquier and E. Pauwels, Acta Crystallogr., Sect. B: Struct.
Sci., 2010, B66, 662–677.
1
8 F. Blanco, I. Alkorta, I. Rozas and J. Elguero, J. Phys. Org. Chem.,
2010, 23, 1155–1172.
1
2
9 B. W. Bycroft, Nature, 1969, 224, 595–597.
0 C. Huber, W. Eisenreich, S. Hecht and G. W a¨ chtersh a¨ user, Science,
2
003, 301, 938–940.
2
2
2
1 B. Clark, R. Capon, E. Lacey, S. Tennata and J. H. Gill, J. Nat. Prod.,
005, 68, 1661–1664.
2 J. Kim, J. A. Ashenhurst and M. Movassaghi, Science, 2009, 324,
38–241.
3 C. J. Dinsmore and D. C. Beshore, Tetrahedron, 2002, 58, 3297–
312.
24 P. Lidstr o¨ m, J. Tierney, B. Wathey and J. Westman, Tetrahedron,
001, 57, 9225–9283.
2
Acknowledgements
2
We thank the rector of the University of Jyv a¨ skyl a¨ and the
Academy of Finland (Decision n:o 127006, December 12th
3
2
008) for the financial support towards the post-doctoral
2
fellowship. The Nanoscience centre for microwave facilities,
X-ray diffractions facilities in the department of chemistry,
University of Jyv a¨ skyl a¨ are acknowledged. Spec Lab techni-
cian Reijo Kauppinen for NMR measurement and Spec lab
technician Mirja Lahtiper a¨ for mass spectral measurements are
acknowledged.
2
5 G. Kilian, H. Jamie, S. C. A. Brauns, K. Dyason and P. J. Milne,
Pharmazie, 2005, 60, 305–309.
6 B. M. Trost and D. T. Stiles, Org. Lett., 2007, 9, 2763–2766.
2
27 (a) P. M. Shou and J. L. Bada, Naturwissenschaften, 1980, 67, 37–38;
(
b) H. Kuroda, S. Kubo, N. Chino, T. Kimura and S. Sakakibara,
Int. J. Pept. Protein Res., 1992, 40, 114–118; (c) R. Nagaraj and
P. Balaram, Tetrahedron, 1981, 37, 2001–2005; (d) S. Yamada, C.
Hongo, R. Yoshioka and I. Chibata, J. Org. Chem., 1983, 48, 843–
8
46.
Notes and references
2
8 M. F. Heath and D. H. Northcote, Biochem. J., 1973, 135, 327–329.
1
2
3
C. Prasad, Peptides, 1995, 15, 151–164.
29 F. N. Shirtoa, H. T. Nagasawa and J. A. Elberling, J. Med. Chem.,
R. B. Corey, J. Am. Chem. Soc., 1938, 60, 1568–1604.
S. Hirano, S. Ichikawa and A. Matsuda, Bioorg. Med. Chem., 2008,
1977, 20, 1176–1181.
30 M. Jainta, M. Nieger and S. Br a¨ se, Eur. J. Org. Chem., 2008, 5418–
5424.
31 (a) E. L. Eliel, S. H. Wilen and L. N. Mander, in Stereochemistry of
Organic Compounds, John Wiley & Sons, Inc, New York, 1994; (b) S.
K. Pradhan and K. R. Thakker, Tetrahedron Lett., 1987, 28, 1813–
1816; (c) E. Touboul and G. Dana, Tetrahedron, 1975, 31, 1925–
1931.
32 T. R. Sarangarajan, K. Panchanatheswaran, J. N. Low and C.
Glidewell, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2005,
C61, o118–o121.
1
6, 428–436.
4
E. Van Der Merwe, D. Huang, D. Petersen, G. Kilian, P. J. Milne, M.
Van de Venter and C. Frost, Peptides, 2008, 29, 1305–1311.
R. R. King and L. A. Calhoun, Phytochemistry, 2009, 70, 833–841.
S. Sinha, R. Srivastava, E. D. Clercq and R. K. Singh, Nucleosides,
Nucleotides Nucleic Acids, 2004, 23, 1815–1824.
5
6
7
P. A. Charlton, R. W. Faint, F. Bent, J. Bryans, I. Chicarelli-Robinson,
I. Mackie, S. Machin and P. Bevan, Thromb. Haemost., 1996, 75, 808–
8
12.
8
A. K. Szardenings, V. Antonenko, D. A. Campbell, N. D. Francisco,
S. Ida, L. Shi, N. Sharkov, D. Tien, Y. Wang and M. Navre, J. Am.
Chem. Soc., 1999, 42, 1348–1357.
33 M. Jainta, M. Nieger and S. Brase, J. Mol. Struct., 2009, 921, 85–88.
34 D. Hendea, S. Laschat, A. Baro and W. Frey, Helv. Chim. Acta, 2006,
89, 1894–1909.
This journal is © The Royal Society of Chemistry 2011
Green Chem., 2011, 13, 1203–1209 | 1209