10.1002/anie.201802311
Angewandte Chemie International Edition
COMMUNICATION
c) T. Furuya, A. S. Kamlet, T. Ritter, Nature 2011, 473, 470-477; d) L.-L.
Chu, F.-L. Qing, J. Am. Chem. Soc. 2011, 134, 1298-1304. e) C.-P. Zhang,
Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu, J.-C. Xiao, Angew. Chem.
Int. Ed. 2011, 50, 1896-1900; f) T.-F. Liu, X.-X. Shao, Y.-M. Wu, Q.-L.
Shen, Angew. Chem. Int. Ed. 2012, 51, 540-543; For reviews, see: g) M.
Shimizu, T. Hiyami, Angew. Chem., Int. Ed. 2005,44, 214-231. h) S. Roy,
B. T. Gregg, G. W. Gribble, V.-D. Le, S. Roy, Tetrahedron 2011, 67, 2161-
2195; i) O. A. Tomashenko, V. V. Grushin, Chem. Rev. 2011, 111, 4475-
4521; j) C.-F. Ni, J.-B. Hu, Chem. Soc. Rev. 2016, 45, 5441-5454;
[4] a) R. Chinchilla, C. Nꢀjera, M. Yus, Chem. Rev. 2004, 104, 2667-2722; b)
C. Y. Legault, A. B. Charette, J. Am. Chem. Soc. 2005, 127, 8966-8967;
c) M. D. Hill, Chem. Eur. J. 2010,16, 12052-12062; d) J. A. Bull, J. J.
Mousseau, G. Pelletier, A. B. Charette, Chem. Rev. 2012, 112, 2642-2713;
e) C. Allais, J. M. Grassot, J. Rodriguez, T. Constantieux, Chem. Rev.
2014, 114, 10829-10868; f) P. W. Ondachi, A.H. Castro, J. M. Bartkowiak,
C. W. Luetje, M. I. Damaj, S. W. Mascarella, H. A. Navarro, F. I. Carroll,
J. Med. Chem. 2014, 57, 836-848.
further oxidation of D by two copper(II) species furnishes CF3-
pyridine product 3 with regeneration of the copper(I) catalyst. In
presence of a suitable base and reductant, D undergoes E1cb to
afford intermediate F, which then isomerizes to the 4-CF2H-
pyridine product 4. Meanwhile, the Cu(I) catalyst is regenerated
by further reduction of Cu(II). The coupling with a -CF3 acrylate
likely follows the same mechanism except that the cyclization
process forms an amide bond. Following this cyclization, the
dihydropyridone species is either released, oxidized by Cu(II), or
undergo elimination of HF under condition control, and the last
pathway is favored for DBU, a stronger base and reductant.
In summary, we have demonstrated redox-divergent access
to five classes of fluoroalkylated heterocycles via copper-
catalyzed [3+3] coupling of oxime acetates with β-
trifluoromethylated enones/acrylates. Under redox-neutral
conditions, the coupling afforded 4-CF3-pyridines and -pyridones.
[5] Y. Fujiwara, J. A. Dixon, F. O'Hara, E. D. Funder, D. Dixon. R. A.
Rodriguez, R. D. Baxter, B. Herle, N. Sach, M. R. Collins, Y. Ishihara, P.
S. Baran, Nature 2012, 492, 95-99.
i
The coupling using PrOH, Zn, and DBU as a reductant led to
selective formation of 4-CF2H pyridines, 4-CF3-dihydropyridones,
and 4-CF2H pyridones, respectively. The coupling systems cover
a particularly broad range of oxime acetates derived from aryl-
alkyl and dialkyl ketones in acyclic as well as cyclic settings. The
redox-diversity and elegant control of reaction selectivity may
provide insight for future studies of other Cu-catalyzed systems,
which are currently underway in our laboratories.
[6] R. A. Pérez, C. Sánchez-Brunete, E. Miguel, J. L. Tadeo, J. Agric. Food
Chem. 1998, 46, 1864-1869.
[7] For selected reports/reviews: a) J. A. Varela, C. Saa, Chem. Rev. 2003,
103, 3787–3801; b) J. R. Manning, H. M. L. Davies, J. Am. Chem. Soc.
2008, 130, 8602–8603; c) Y.-F. Wang, S. Chiba, J. Am. Chem. Soc. 2009,
131, 12570–12571; d) L. Ackermann, Chem. Rev. 2011, 111, 1315-1345;
e) L. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885-
1898; f) P. Kumar, S. Prescher, J. Louie, Angew. Chem. Int. Ed. 2011, 50,
10694–10698; g) T. Hille, T. Irrgang, R. Kempe, Angew. Chem. Int. Ed.
2017, 56, 371–374;
Acknowledgements ((optional))
[8] a) P. C. Too, T. Noji, Y. J. Lim, X. Li, S. Chiba, Synlett 2011, 2789-2794;
b) R. K. Chinnagolla, S. Pimparkar, M. Jeganmohan, Org. Lett. 2012, 14,
3032-3035; c) Y. Xu, W. Hu, X. Tang, J. Zhao, W. Wu, H. Jiang, Chem.
Commun. 2015, 51, 6843-6846; d) M.-N. Zhao, Z.-H. Ren, L. Yu, Y.-Y.
Wang, Z.-H. Guan, Org. Lett. 2016, 18, 1194–1197. For reviews, see: e)
S. Z. Zard, Chem. Soc. Rev. 2008, 37, 1603; f) H.-W. Huang, X.-C. Ji, W.-
Q. Wu, H.-F. Jiang, Chem. Soc. Rev., 2015, 44, 1155-1171;
The NSFC (Nos. 21525208 and 21472186) and research fund
from Educational Department of Henan Province (18A150010)
are gratefully acknowledged.
Keywords: Copper • Pyridine • Pyridone • Oxime• Fluoroalkyl
[9] a) S. Liu, L. S. Liebeskind, J. Am. Chem. Soc. 2008, 130, 6918-6919; b)
Z.-H. Ren, Z.-Y. Zhang, B.-Q. Yang, Y.-Y. Wang, Z.-H. Guan, Org. Lett.
2011, 13, 5394-5397; c) Y. Wei, N. Yoshikai, J. Am. Chem. Soc. 2013,
135, 3756-3759; d) X. Tang, L. Huang, C. Qi, W. Wu, H. Jiang, Chem.
Commun. 2013, 49, 9597-9599. e) H. Huang, X. Ji, X. Tang, M. Zhang, X.
Li, H. Jiang, Org. Lett. 2013, 15, 6254-6257; f) W. Du, M.-N. Zhao, Z.-H.
Ren, Y.-Y. Wang, Z.-H. Guan, Chem. Chem. 2014, 50, 7437-7439; g) Q.-
F. Wu, Y. Zhang, S.-L. Cui, Org. Lett. 2014, 16, 1350-1353; h) H.-F. Jiang,
J.-D. Yang, X.-D. Tang, J.-X. Li, W.-Q. Wu, J. Org. Chem. 2015, 80,
8763-8771; i) W.-W. Tan, Y.J. Ong, N. Yoshikai, Angew. Chem. Int. Ed.
2017, 56, 8240-8244; j) C. Zhu, R. Zhu, H. Zeng, F. Chen, C. Liu, W. Wu,
H. Jiang, Angew. Chem. Int. Ed. 2017, 56, 13324-13328.
[1] a) R. E. Banks, G. B. Chemist Organofluorine Chemicals and Their
Industrial Applications: Symposium. Horwood: 1979; b) J.H. Clark, D.
Wails, T. W. Bastock, Aromatic Fluorination; CRC Press: Boca Raton,
1996; c) T. Hiyama, K. Kanie, T. Kusumoto, Y. Morizawa, M. Shimizu,
Organofluorine Compounds: Chemistry and Application; Springer: Berlin,
2000; d) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications; Wiley-VCH: Weinheim, 2004; e) K. Uneyama,
Organofluorine Chemistry; Blackwell: Oxford, 2006; f) M. Schlosser.
Angew. Chem., Int. Ed. 2006, 45, 5432-5446; g) K. Müller, C. Faeh, F.
Diederich, Science 2007, 317, 1881-1886; h) S. Purser, P. R. Moore, S.
Swallow, V. Gouverneur, Chem. Soc. Rev. 2008, 37, 320-330.
[10] (a) B. Zhao, H.-W. Liang, J. Yang, Z. Yang, Y. Wei, ACS Catal. 2017, 7,
5612-5617; (b) J. Yang, B. Zhao, Y. Xi, S. Sun, Z. Yang, Y. Ye, K. Jiang,
Y. Wei, Org. Lett. 2018, 20, 1216-1219.
[2] a) J. A. Erickson and J. I. McLoughlin, J. Org. Chem. 1995, 60, 1626-1631;
b) F. Narjes, K. F. Koehler, U. Koch, B. Gerlach, S. Colarusso, C.
Steinkuhler, M. Brunetti, S. Altamura, R. D. Francesco, V. G. Matassa,
Bioorg. Med. Chem. Lett. 2002, 12, 701-704; c) Y. Xu, G. D. Prestwich, J.
Org. Chem. 2002, 67, 7158-7161; d) N. A. Meanwell, J. Med. Chem. 2011,
54, 2529–2591; e) Y. Fujiwara, J. A. Dixon, R. A. Rodriguez, R. D. Baxter,
D. D. Dixon, M. R. Collins, D. G. Blackmond, P. S. Baran, J. Am. Chem.
Soc. 2012, 134, 1494-1497; f) P. S. Fier, J. F. Hartwig, J. Am. Chem. Soc.
2012, 134, 5524-5527; g) J. Rong, C.-F. Ni, J.-B. Hu, Asian J. Org. Chem.
2017, 139-152; h) C.-H. Lu, Y. Gu, J. Wu, Y.-C. Gu, Q.-L. Shen, Chem.
Sci. 2017, 8, 4848-4852.
[11] a) Q. Jiang, T. Guo, K. Wu, Z. Yu, Chem. Commun. 2016, 52, 2913-2915;
b) B. Liu, P. Hu, Y. Zhang, Y. Li, D. Bai, X. Li, Org. Lett. 2017, 19, 5402-
5405.
[12] CCDC-1824515 (8a) contains the supplementary crystallographic data for
this paper. This data can be obtained free of charge from the Cambridge
Crystallographic
Data
Centre
via
[13] G. Song, X. Li, Acc. Chem. Res. 2015, 48, 1007-1020.
[14] G. K. S. Prakash, R. Mogi, G. A. Olah, Org. Lett. 2006, 8, 3589-3592.
[3] (a) M. Oishi, H. Kondo, H. Amii, Chem. Commun. 2009, 1909-1911; b) R.
J. Lundgren, M. Stradiotto, Angew. Chem. Int. Ed. 2010, 49, 9322-9324;
This article is protected by copyright. All rights reserved.