Zhu and Drueckhammer
SCHEME 1
SCHEME 2
catalysis, linked to a basic group (B) positioned to
deprotonate the R-carbon. The linker should hold the
electrophilic and basic groups in proper relative position
for optimal transition state stabilization in conversion
of the substrate complex 3 to the enolate complex 4.
Described here are the computational modeling of the
transition state for this reaction, the design of an
appropriate linker, and synthesis and testing of the
designed catalyst.
aza-crown ethers,20 and a modified Kemp’s triacid.21 Such
catalysts are typically designed to have distinct func-
tional groups for deprotonation and for stabilization or
protonation of enolate oxygen. A recognized challenge in
the design of such catalysts is making the backbone
structure sufficiently rigid or constrained to prevent
collapse into a conformation in which the catalytic groups
simply bind to each other.21,22 Several receptors have been
reported that selectively bind and stabilize enolates.22-27
These receptors usually bind the enolate via hydrogen-
bonding interactions to the enolate oxygen, though acidity
enhancement by intramolecular coordination to Zn(II) ion
has also been demonstrated.25
The goal of this project was to use computer-guided
design methods based on the computer program CAVEAT
to design a simple enolate-forming catalyst. CAVEAT is
a unique program developed by Bartlett and co-workers
that searches a virtual molecular database to identify
structures having bonds that match a set of defined
vectors.28,29 Each vector defines a starting point and a
direction, with compounds identified using CAVEAT
having sets of atoms and associated bonds corresponding
to each vector. This program has been used in the design
of enzyme inhibitors and conformationally constrained
peptides28,29 and more recently in the design of chiral
ligands for asymmetric catalysis30 and a boronic acid-
based receptor and sensor for glucose.31
Results
For this initial study, an amine was chosen as the basic
group and a urea or thiourea as the electrophilic group.
The development of a computer model for the transition
state began with location of the transition state 5 for
proton transfer from the protonated form of acetone to
trimethylamine (Scheme 2). The transition state for this
reaction was located and optimized at the HF/6-31+G-
(d) level using the QST2 method in Gaussian03.32 The
resulting structure was modified by deletion of the proton
on the oxygen and introduction of N,N′-dimethylurea in
position to form two hydrogen bonds to this oxygen. One
of the amine methyl groups was replaced with a hydrogen
atom to simplify the structure.
The general approach of this project is illustrated in
Scheme 1. The catalyst 1 is envisioned having an elec-
trophilic group (E) that will coordinate to the carbonyl
oxygen of the substrate 2 and stabilize the enolate during
(18) Breslow, R.; Desper, J. M.; Huang, Y. Tetrahedron Lett. 1996,
37, 2541-2544.
(19) Binder, W. H.; Menger, F. M. Tetrahedron Lett. 1996, 37, 8963-
8966.
FIGURE 1. Complexes used in transition state models.
(20) Fenniri, H.; Lehn, J.-M.; Marquis-Rigault, A. J. Am. Chem. Soc.
1996, 35, 337-339.
The atoms of the amine, the enolate, and the transfer-
ring proton were frozen, and the position and structure
of the urea moiety was optimized at the B3LYP/6-31+G-
(d) level to give the approximate transition state struc-
ture 6 shown in Figures 1 and 2. In complexes with
acetone or its enolate, the urea aligned in approximately
the same plane as the non-hydrogen atoms of the ketone
(21) Wolfe, J.; Muehldorf, A.; Rebek, J. J. Am. Chem. Soc. 1991,
113, 1453-1454.
(22) Snowden, T. S.; Bisson, A. P.; Anslyn, E. V. Bioorg. Med. Chem.
2001, 9, 2467-2478.
(23) Chin, T.; Gao, Z.; Lelouche, I.; Shin, Y. K.; Purandare, A.;
Knapp, S.; Isied, S. S. J. Am. Chem. Soc. 1997, 119, 12849-12858.
(24) Kimura, E.; Kitamura, H.; Koike, T.; Shiro, M. J. Am. Chem.
Soc. 1997, 119, 10909-10919.
(25) Kimura, E.; Gotoh, T.; Koike, T.; Shiro, M. J. Am. Chem. Soc.
1999, 121, 1267-1274.
(26) Kelly-Rowley, A. M.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem.
Soc. 1995, 117, 3438-3447.
(32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken,
V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev,
O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P.
Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas,
O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov,
B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.;
Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;
Gonzalez, C.; Pople, J. A. Gaussian 03, revision A.1; Gaussian, Inc.:
Wallingford, CT, 2004.
(27) Snowden, T. S.; Bisson, A. P.; Anslyn, E. V. J. Am. Chem. Soc.
1999, 121, 6324-6325.
(28) Lauri, G.; Bartlett, P. A. J. Comput.-Aided Mol. Des. 1994, 8,
51-66.
(29) (a) Bartlett, P. A.; Shea, G. T.; Telfer, S. J.; Waterman, S. In
Molecular Recognition: Chemical and Biological Problems; Roberts,
S. M., Ed.; Royal Society of Chemistry: London, 1989; pp 182-196.
(b) Bartlett, P. A.; Etzkorn, F. A.; Guo, T.; Lauri, G.; Liu, K.; Lipton,
M.; Morgan, B. P.; Shea, G. T. In Chemistry at the Frontiers of
Medicine, Proceedings of the Robert A. Welch Foundation Conference
on Chemical Research XXXV, Houston, TX, Oct 28-29, 1991; Robert
A. Welch Foundation: Houston, TX, 1991; pp 45-68.
(30) Kozlowski, M. C.; Panda, M. J. Mol. Graphics Modell. 2002,
20, 399-409.
(31) Yang, W.; He, H.; Drueckhammer, D. G. Angew. Chem., Int.
Ed. 2002, 40, 1714-1718.
7756 J. Org. Chem., Vol. 70, No. 19, 2005