5
2
C.E. Diaz-Uribe et al. / Journal of Photochemistry and Photobiology A: Chemistry 259 (2013) 47–52
Inorganic semiconductors, such as silicon dioxide, with bound
photosensitizers are becoming increasingly important for appli-
cations in photocatalysis, dye sensitized solar cells, and many
[18] W. Xu, H. Guo, D.L. Akins, Aggregation of tetrakis(p-sulfonatophenyl) porphyrin
within modified mesoporous MCM-41, Journal of Physical Chemistry B 105
2001) 1543–1546.
(
[
19] R. Giovannetti, L. Alibabaei, L. Petetta, Aggregation behaviour of a tetracar-
boxylic porphyrin in aqueous solution, Journal of Photochemistry and
Photobiology A: Chemistry 211 (2010) 108–114.
other areas. This paper reports
a system where tetrakis(4-
carboxyphenyl)porphyin (TCPP) is absorbed onto porous silica
particles. Upon photolysis in the presence of oxygen strong evi-
dence is provided that the only detectable photosensitization
process involves formation of singlet oxygen. There is no com-
peting superoxide formation. This is demonstrated by reaction of
reactive oxygen species with spin probes and also by identification
of the chemical products from reaction with anthracene. Although
there have been other studies on TCCP bound to silica particles,
our results are new and provide information on photosensitization
pathways in the presence of oxygen, which will be useful for people
working in the area of photocatalysis.
Tetra(4-carboxypenyl)porphyrin adsorbed on SiO2 with visible
light generates singlet oxygen and no other oxygen species, as was
evidenced by TEMPO EPR measurements and chemical trapping
with anthracene. It can be used as a pure single oxygen generation
system for biological applications.
[
20] K. Lang, J. Mosinger, D.M. Wagnerová, Photophysical properties of porphyrinoid
sensitizers non-covalently bound to host molecules; models for photodynamic
therapy, Coordination Chemistry Reviews 248 (2004) 321–350.
[21] J. Mosinger, M. Deumié, K. Lang, P. Kubát, D.M. Wagnerová, Supramolecular
sensitizer: complexation of meso-tetrakis(4-sulfonatophenyl)porphyrin with
2-hydroxypropyl-cyclodextrins, Journal of Photochemistry and Photobiology
A: Chemistry 130 (2000) 13–20.
[22] D. Bechet, P. Couleaud, C. Frochot, M.L. Viriot, F. Guillemin, M. Barberi-Heyob,
Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends
in Biotechnology 26 (2008) 612–621.
[
[
[
23] M. Trytek, M. Majdan, A. Lipke, J. Fiedurek, Sol–gel immobilization of octaethyl-
porphine and hematoporphyrin for biomimetic photooxidation of ␣-pinene,
Journal of Catalysis 286 (2012) 193–205.
24] W. Kim, J. Park, H.J. Jo, H. Kim, W. Choi, Visible light photocatalysts based on
homogeneous and heterogenized tin porphyrins, Journal of Physical Chemistry
C 112 (2008) 491–499.
25] J.M. Aubry, C. Pierlot, J. Rigaudy, R. Schmidt, Reversible binding of oxy-
gen to aromatic compounds, Accounts of Chemical Research 36 (2003)
668–675.
[26] D. Madhavan, K. Pitchumani, Photoreactions in clay media: singlet oxygen oxi-
dation of electron-rich substrates mediated by clay-bound dyes, Journal of
Photochemistry and Photobiology A: Chemistry 153 (2002) 205–208.
[
27] F. Goulay, C. Rebrion-Rowe, J.L. Le Garrec, S.D. Le Picard, A. Casona, B.R. Rowe,
The reaction of anthracene with OH radicals: an experimental study of the
kinetics between 58 and 470 K, Journal of Physical Chemistry 122 (2005)
104308(1)–104308(7).
Acknowledgments
Support from Universidad Industrial de Santander (5138
Project) is gratefully acknowledged. Carlos E. Diaz-Uribe thanks
COLCIENCIAS “Fondo apoyo a los Doctorados Nacionales” for the
financial support.
[28] J.R. Harbour, V. Chow, J.R. Bolton, An electron spin resonance study of the spin
adducts of OH and HO2 radicals with nitrone in ultraviolet photolysis of aque-
ous hydrogen peroxide solutions, Canadian Journal of Chemistry 52 (1974)
3549–3553.
[
29] Y. Lion, M. Delmelle, A. Van de Vorst, New method of detecting singlet oxygen
production, Nature 263 (1976) 442–443.
References
[30] A.D. Adler, F.R. Longo, J.D. Finarelli, J. Goldmacher, J. Assour, L. Korsakoff, A sim-
plified synthesis for meso-tetraphenylporphyrin, Journal of Organic Chemistry
3
2 (1967) 476.
[
[
[
1] M.C. De Rosa, R.J. Crutchley, Photosensitized singlet oxygen and its applications,
Coordination Chemistry Reviews 351 (2002) 233–234.
2] C.R. Lambert, I.E. Kochevar, Does rose Bengal triplet generate superoxide anion?
Journal of the American Chemical Society 118 (1996) 3297–3298.
3] J.P. Tardivo, A. Del Giglio, C. Santos de Oliveira, D. Santesso-Gabrielli, H. Couto-
Junqueira, D. Batista-Tada, D. Severino, R. Turchiello, M.S. Baptista, Methylene
blue in photodynamic therapy: from basic mechanisms to clinical applications,
Photodiagnosis and Photodynamic Therapy 2 (2005) 175–191.
[
31] M.A. Schiavon, L.S. Iwamoto, A.G. Ferreira, Y. Iamamoto, M.V.B. Zanoni, M.D.
Assis, Synthesis and characterization of a novel series of meso(nitrophenyl) and
meso(carboxyphenyl) substituted porphyrins, Journal of the Brazilian Chemical
Society 11 (2000) 458–466.
32] Q. Wang, W.M. Campbell, E.E. Bonfantani, K.W. Jolley, D.L. Officer, P.J. Walsh,
K. Gordon, R. Humphry-Baker, M.K. Nazeeruddin, M. Grätzel, Efficient light
harvesting by using green Zn-porphyrin-sensitized nanocrystalline TiO2 films,
Journal of Physical Chemistry B 109 (2005) 15397–15409.
33] T. López, A. López-Gaona, R. Gómez, Synthesis, characterization and activity of
Ru/SiO2 catalysts prepared by the sol–gel method, Journal of Non-Crystalline
Solids 110 (1989) 170–174.
34] Y. Cho, W. Choi, C.H. Lee, T. Hyeon, H.I. Lee, Visible light-induced degrada-
tion of carbontetrachloride on dye-sensitized TiO2, Environmental Science and
Technology 35 (2001) 966–970.
[
[
[
[
[
[
[
4] J.M. Aubry, Search for singlet oxygen in the decomposition of hydrogen per-
oxide by mineral compounds in aqueous solutions, Journal of the American
Chemical Society 107 (1985) 5844.
5] C.E. Diaz-Uribe, F. León, M.C. Daza, F. Martínez, Oxidación de antraceno
con oxígeno singulete generado químicamente por el sistema molibdato de
sodio/peróxido de hidrógeno, Revista Colombiana de Química 37 (2008) 45–53.
6] G. Rossi, R. Fedele, C. Comuzzi, D. Goi, Bactericidal activity characterization of
an expanded porphyrin on Gram-positive bacteria, Journal of Biotechnology
[
[
[
35] J.F. Cornet, A. Marty, J.B. Gros, Revised technique for the determination of mean
incident light fluxes on photobioreactor, Biotechnology Progress 13 (1997)
1
50 (2010) 438.
4
08–415.
7] F. Schmitt, N. Barry, L. Juillerat-Jeanneret, B. Therrien, Efficient photodynamic
therapy of cancer using chemotherapeutic porphyrin–ruthenium metalla-
cubes, Bioorganic and Medicinal Chemistry Letters 22 (2012) 178–180.
8] C. Tanielian, D. Wolff, Porphyrin-sensitized generation of singlet molecular
oxygen: comparison of steady-state and time-resolved methods, Journal of
Physical Chemistry 99 (1995) 9825–9830.
[
[
36] M. Gouterman, G.H. Wagnière, L.C. Snyder, Spectra of porphyrins: Part II. Four
orbital model, Journal of Molecular Spectroscopy 11 (1963) 108–127.
37] X. Li, Z. Li, Q. Xia, H. Xi, Effects of pore sizes of porous silica gels on desorp-
tion activation energy of water vapour, Applied Thermal Engineering 27 (2007)
8
69–876.
[
38] W. Zheng, N. Shan, L. Yu, X. Wang, UV–visible, fluorescence and EPR prop-
erties of porphyrins and metalloporphyrins, Dyes and Pigments 77 (2008)
9] R. Redmond, J. Gamlin, A compilation of singlet oxygen yields from biologically
relevant molecules, Photochemistry and Photobiology 70 (1999) 391–475.
1
53–157.
[
[
[
10] F. Ricchelli, Photophysical properties of porphyrins in biological membranes,
Journal of Photochemistry and Photobiology B: Biology 29 (1995) 109–118.
11] R. Bonnett, Photosensitizers of the porphyrin and phthalocyanine series for
photodynamic therapy, Chemical Society Reviews 24 (1995) 19–33.
12] J. Paczkowskit, D.C. Neckers, Polymer-based sensitizers for the formation of
singlet oxygen. New studies of polymeric derivatives of rose Bengal, Macro-
molecules 18 (1985) 1245–1253.
13] T.J. Dougherty, Photosensitizers: therapy and detection of malignant tumors,
Photochemistry and Photobiology 45 (1987) 879–889.
14] C. Flors, S. Nonell, Light and singlet oxygen in plant defense against pathogens:
phototoxic phenalenone phytoalexins, Accounts of Chemical Research 39
[
39] C. Wang, J. Li, G. Mele, G.M. Yang, F.-X. Zhang, L. Palmisano, G. Vasapollo,
Efficient degradation of 4-nitrophenol by using functionalized porphyrin-TiO2
photocatalysts under visible irradiation, Applied Catalysis B: Environmental 76
(
2007) 218–226.
[
40] C. Hadjur, A. Jeunet, P. Jardon, Photosensitization by hypericin: electron spin
resonance (ESR) evidence for the formation of singlet oxygen and superoxide
anion radicals in an in vitro model, Journal of Photochemistry and Photobiology
B: Biology 26 (1994) 67–74.
41] C. Diaz-Uribe, M.C. Daza, F. Martínez, E. Páez-Mozo, C. Guedes, E. Di
Mauro, Visible light superoxide radical anion generation by tetra(4-
carboxyphenyl)porphyrin/TiO2: EPR characterization, Journal of Photochem-
istry and Photobiology A: Chemistry 215 (2010) 172–178.
42] R. Renganathan, A. Kathiravan, Effect of anchoring group on the photosensiti-
zation of colloidal TiO2 nanoparticles with porphyrins, Journal of Colloid and
Interface Science 331 (2009) 401–407.
43] J. He, J. Zhao, H. Hidaka, N. Serpone, EPR characteristics of a dye/colloidal TiO2
system under visible light irradiation, Journal of the Chemical Society, Faraday
Transactions 94 (1998) 2375–2378.
[
[
[
(
2006) 293–300.
[
15] C.R. Lambert, E. Reddi, J.D. Spikes, M.A. Rodgers, G. Jori, The effects of porphyrin
structure and aggregation state on photosensitized processes in aqueous and
micellar media, Photochemistry and Photobiology 44 (1986) 595–601.
16] M. Pineiro, M. Pereira, A.M. Rocha-Gonsalves, L. Arnaut, S. Formosinho, Singlet
oxygen quantum yields from halogenated chlorins: potential new photo-
dynamic therapy agents, Journal of Photochemistry and Photobiology A:
Chemistry 138 (2001) 147–157.
[
[
[
[
44] C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation
of singlet oxygen, Chemical Reviews 103 (2003) 1685–1757.
[
17] K. Ishii, Functional singlet oxygen generators based on phthalocyanines, Coor-
dination Chemistry Reviews 256 (2012) 1556–1568.