Effective Homogeneous Hydrolysis of Phosphodiester and DNA Cleavage
DNA cleavage
efficiency under mildness conditions. On the basis of
kinetics studies and spectrum analysis as well as gel
electrophoresis, electrostatic of DNA binding is sug-
gested for CSCu, the active species of copper-bound
hydroxide group and the intramolecular attack mecha-
nism are proposed for CSCu-catalyzed reaction system.
We concluded that chitosan-based metal complexes
have potential application as a catalyst for cleavage of
phosphodiester bonds, since they show relative high
catalytic efficiency, and are relatively cheaper and
environment-friendly.
Considering CSCu as artificial phosphodiesterase,
the cleavage experiment on natural DNA has been car-
ried by agarose gel electrophoresis, supercoiled pUC19
DNA used as the substrate. We adopted CSCu with dif-
ferent concentration to cleave pUC19 DNA molecular.
The reactions were carried out by incubat+ing the com-
plex with pUC 19 DNA for 1 h in Tris-H (pH=8.0).
The result in Figure 9 indicated that the supercoiled
DNA molecular can be cleaved into nicked and linear
DNA by CSCu complex, which was evidenced by the
disappearance of form I (supercoiled form) of the plas-
mid and the appearance of the form II (nicked circular
form). The observed rate constant kobs for pUC19 DNA
References
1
(a) Shelton, V. M.; Morrow, J. R. Inorg. Chem. 1991, 30,
4295.
-1
cleavage by CSCu, obtained from Figure 9, is 0.079 h ,
a rate acceleration of 6 orders of magnitude over un-
catalyzed DNA hydrolysis.5 On the basis of the catalytic
kinetics studies and DNA binding and cleavage experi-
ments, we proposed that the negative charged phosphate
group in DNA strands is the most active binding site to
bind with CSCu. The existence of copper ions facilitates
the binding of CSCu to DNA, generates an attacking
nucleophilic reactant and promotes cleavage of DNA
strands. Thus, it can be regarded that the intermediate
CSCu-DNA complex was formed very quickly, fol-
lowed by the intramolecular nucleophilic attack on the
phosphodiester bond of DNA backbone which induced
the DNA cleavage.
(b) Rammo, J.; Schneider, H.-J. Inorg. Chim. Acta 1996,
251, 125.
(c) Molenveld, P.; Engbersen, J. F. J.; Reinhoudt, D. N.
Angew. Chem., Int. Ed. 1999, 38, 3189.
(d) Chen, X. Q.; Peng, X. J.; Wang, J. Y. Eur. J. Inorg.
Chem. 2007, 34, 5400.
(a) Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. Rev.
1999, 99, 2777.
(b) Branum, M. E.; Tipton, A. K.; Zhu, S.; Que, L. J. Am.
Chem. Soc. 2001, 123.
(c) Komiyama, M.; Kina, S.; Matsumura, K. J. Am. Chem.
Soc. 2002, 124, 13731.
(d) Scheffer, U.; Strick, A.; Ludwig, V.; Peter, S.; Kalden, E.;
Göbel, M. W. J. Am. Chem. Soc. 2005, 127.
(a) Bruice, T. C.; Tsubouchi, A.; Dempcy, R. O.; Olson, L. P.
J. Am. Chem. Soc., 1996, 118, 9867.
(b) Iranzo, O.; Kovalevsky, A. Y.; Morrow, J. R.; Richard, J.
P. J. Am. Chem. Soc, 2003, 125.
(c) Li, C. L.; Hor, L. I.; Chang, Z. F.; Tsai, L. C.; Yang, W.
Z.; Yuan, H. S. Embo J. 2003, 22.
(d) Feng, G.; Mareque-Rivas, J. C.; Torres Martin, R.;
Williams, N. H. J. Am. Chem. Soc, 2005, 127, 13470.
(a) Hegg, E. L.; Deal, K. A.; Kiessling, L. L.; Burstyn, J. N.
Inorg. Chem. 1997, 36, 1715.
(b) Young, M. J.; Wahnon, D.; Hynes, R. C.; Chin, J. J. Am.
Chem. Soc. 1995, 117, 9441.
(c) Chin, K. O. A.; Morrow, J. R. Inorg. Chem. 1994, 33,
5036.
2
3
4
Figure 9 Agarose gel electrophoresis of cleavage reaction of
-1
pUC19 DNA (20 µmol•L bp) by CSCu. Scission condition:
lane 1: DNA control, the concentration of CSC-u: lane 2, 5
-
-1
µmol•L ; lane 3, 10 µmol•L 1; lane 4, 20 µmol•L 1; lane 5, 30
-1
-
-
µmol•L ; lane 6, 40 µmol•L 1; lane 7, 50 µmol•L 1; lane 8, 100
µmol•L ; incubation time, 1 h; 10 mmol•L 1 Tris-H buffer, pH
-1
-
+
8.0 at 25 ℃.
Conclusion
(d) Detmer, C. A.; Pamatong, F. V.; Bocarsly, J. R. Inorg.
Chem. 1997, 36, 3676.
(e) Cacciapaglia, R.; Casnati, A.; Mandolini, L. J. Am.
Chem. Soc. 2007, 129, 12512.
(f) Selmeczi, K.; Giorgi, M.; Speier, G.; Farkas, E.; Reglier,
M. Eur. J. Inorg. Chem., 2006, 1022.
(g) Shao, Y.; Sheng, X.; Li, Y.; Jia, Z. L.; Zhang, L. L.; Lin,
F.; Lu, G. Y. Bioconjugate Chem. 2008, 19, 1840.
Hettich, R.; Schneider, H.-J. J. Am. Chem. Soc. 1997, 119,
5638.
As a natural polymer, chitosan has a unique molecu-
lar structure and chemical properties that can be ex-
ploited in catalyst design. In this paper, we tentatively
used the chitosan-based copper complex as an artificial
hydrolase to catalyze phosphodiester BNPP hydrolysis
and natural DNA cleavage. The results of our investiga-
tion highlighted the capability of CSCu as artificial
catalytic model. BNPP hydrolysis by CSCu in aqua so-
lution showed significant rate enhancement (3 ×
105-fold) over its spontaneous hydrolysis. The kinetics
of CSCu-catalyzed BNPP hydrolysis was consistent
with those predicted by the Michaelis-Menten model.
Moreover, CSCu has been found to alter configuration
structure of DNA strand and promote DNA cleavage
5
6
(a) Aguilar-Perez, F.; GomezTagle, P.; Collado-Fregoso, E.;
Yatsinirsky, A. K. Inorg. Chem. 2006, 45, 9502.
(b) Kou, X. M.; Hu, Y.; Huang, Z.; Meng, X. G.; Zeng, X. C.
Chin. J. Chem. 2005, 23, 1303.
Chin. J. Chem. 2011, 29, 711— 718
© 2011 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
717