Page 15 of 16
ACS Catalysis
1
2. Wong, S. E.; Lau, E. Y.; Kulik, H. J.; Satcher, J. H.; Valdez, C.;
Worsely, M.; Lightstone, F. C.; Aines, R., Designing Small-Molecule
Catalysts for CO Capture; Energy Procedia 2011, 4, 817-823.
3. Ibrahim, M. M.; Shaban, S. Y.; Ichikawa, K., A Promising
Structural Zinc Enzyme Model for CO Fixation and Calcification;
Tetrahedron Lett. 2008, 49, 7303-7306.
Catalysis; Acta Crystallogr., Sect. C: Struct. Chem. 2014, 70, 123-
131.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
2
28. Bandeira, N. A.; Garai, S.; Muller, A.; Bo, C., The Mechanism
of Co2 Hydration: A Porous Metal Oxide Nanocapsule Catalyst
Can Mimic the Biological Carbonic Anhydrase Role; Chem.
Commun. (Cambridge, U. K.) 2015, 51, 15596-15599.
29. Piazzetta, P.; Marino, T.; Russo, N.; Salahub, D. R., Direct
Hydrogenation of Carbon Dioxide by an Artificial Reductase
Obtained by Substituting Rhodium for Zinc in the Carbonic
Anhydrase Catalytic Center. A Mechanistic Study; ACS Catal.
2015, 5, 5397-5409.
1
2
14. Ibrahim, M. M.; Amin, M. A.; Ichikawa, K., Synthesis and
Characterization of Benzimidazole-Based Zinc Complexes as
Structural Carbonic Anhydrase Models and Their Applications
Towards Co2 Hydration; J. Mol. Struct. 2011, 985, 191-201.
1
5. Jin, C.; Zhang, S.; Zhang, Z.; Chen, Y., Mimic Carbonic
Anhydrase Using Metal-Organic Frameworks for CO
and Conversion; Inorg. Chem. 2018, 57, 2169-2174.
16. Bergquist, C.; Fillebeen, T.; Morlok, M. M.; Parkin, G.,
Protonation and Reactivity Towards Carbon Dioxide of the
Mononuclear Tetrahedral Zinc and Cobalt Hydroxide Complexes,
2
Capture
30. Yu, F.; Cangelosi, V. M.; Zastrow, M. L.; Tegoni, M.; Plegaria,
J. S.; Tebo, A. G.; Mocny, C. S.; Ruckthong, L.; Qayyum, H.; Pecoraro,
V. L., Protein Design: Toward Functional Metalloenzymes; Chem.
Rev. 2014, 114, 3495-3578.
31. Pocker, Y.; Bjorkquist, D. W., Stopped-Flow Studies of
Carbon Dioxide Hydration and Bicarbonate Dehydration in
Water and Water-D2. Acid-Base and Metal Ion Catalysis; J. Am.
Chem. Soc. 1977, 99, 6537-6543.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
[Tp(Bu)T(,Me)]Znoh and [Tp(Bu)T(,Me)]Cooh: Comparison of
the Reactivity of the Metal Hydroxide Function in Synthetic
Analogues of Carbonic Anhydrase; J. Am. Chem. Soc. 2003, 125,
6189-6199.
32. Brown, R. S.; Curtis, N. J.; Huguet, J., Tris(4,5-
+
1
7. Lau, E. Y.; Wong, S. E.; Baker, S. E.; Bearinger, J. P.; Koziol,
Diisopropylimidazol-2-Yl)Phosphine-Zinc(2 ) - a Catalytically
L.; Valdez, C. A.; Satcher, J. H., Jr.; Aines, R. D.; Lightstone, F. C.,
Comparison and Analysis of Zinc and Cobalt-Based Systems as
Catalytic Entities for the Hydration of Carbon Dioxide; PloS one
2013, 8, e66187.
Active Model for Carbonic-Anhydrase; J. Am. Chem. Soc. 1981,
103, 6953-6959.
33. Zhang, X.; van Eldik, R.; Koike, T.; Kimura, E., Kinetics and
Mechanism of the Hydration of Carbon Dioxide and Dehydration
of Bicarbonate Catalyzed by a Zinc (II) Complex of 1,5,9-
Triazacyclododecane as a Model for Carbonic Anhydrase; Inorg.
Chem. 1993, 32, 5749-5755.
1
8. Davy, R.; Shanks, R. A.; Periasamy, S.; Gustafason, M. P.;
Zambergs, B. M., Development of High Stability Catalysts to
Facilitate CO Capture into Water–an Alternative to
Monoethanolamine and Amine Solvents; Energy Procedia 2011,
2
34. Zhang, X.; van Eldik, R., A Functional Model for Carbonic
4
, 1691-1698.
Anhydrase: Thermodynamic and Kinetic Study of
a
19. Keum, C.; Kim, M.-C.; Lee, S.-Y., Effects of Transition Metal
Tetraazacyclododecane Complex of Zinc(II); Inorg. Chem. 1995,
34, 5606-5614.
Ions on the Catalytic Activity of Carbonic Anhydrase Mimics; J.
Mol. Catal. A: Chem. 2015, 408, 69-74.
35. Sun, Y.-J.; Zhang, L. Z.; Cheng, P.; Lin, H.-K.; Yan, S.-P.; Liao,
D.-Z.; Jiang, Z.-H.; Shen, P.-W., Dehydration Kinetic Studies of
Hco3− Catalyzed by Three Half-Sandwich Nickel(Ii) Complexes in
2
0. Koziol, L.; Valdez, C. A.; Baker, S. E.; Lau, E. Y.; Floyd, W. C.,
3
rd; Wong, S. E.; Satcher, J. H., Jr.; Lightstone, F. C.; Aines, R. D.,
-
-
-
Toward a Small Molecule, Biomimetic Carbonic Anhydrase
Model: Theoretical and Experimental Investigations of a Panel of
Zinc(Ii) Aza-Macrocyclic Catalysts; Inorg. Chem. 2012, 51, 6803-
2 3
the Presence of Inhibitors NO , N and NCS ; Inorg. Chem.
Commun. 2004, 7, 165-168.
36. Sun, Y.-J.; Zhang, L. Z.; Cheng, P.; Lin, H.-K.; Yan, S.-P.; Liao,
D.-Z.; Jiang, Z.-H.; Shen, P.-W., Experimental and Theoretical
Studies of the Dehydration Kinetics of Two Inhibitor-Containing
Half-Sandwich Cobalt(Ii) Complexes; J. Mol. Catal. A: Chem. 2004,
208, 83-90.
37. Davy, R., Development of Catalysts for Fast, Energy
2
Efficient Post Combustion Capture of CO into Water; an
6
812.
1. Satcher, J. H.; Baker, S. E.; Kulik, H. J.; Valdez, C. A.; Krueger,
2
R. L.; Lightstone, F. C.; Aines, R. D., Modeling, Synthesis and
Characterization of Zinc Containing Carbonic Anhydrase Active
Site Mimics; Energy Procedia 2011, 4, 2090-2095.
2
2. Sun, Y.-J.; Zhang, L. Z.; Sun, W.; Cheng, P.; Lin, H.-K.; Yan, S.-
P.; Liao, D.-Z.; Jiang, Z.-H.; Shen, P.-W., Kinetics and Mechanism of
the Bicarbonate Dehydration of the Half-Sandwich Zinc(II)
Alternative to Monoethanolamine (Mea) Solvents; Energy
Procedia 2009, 1, 885-892.
Complexes
[Tpph]Znx
([Tpph]
=
Hydrotris(3-
38. Rodionov, V. O.; Presolski, S. I.; Gardinier, S.; Lim, Y. H.; Finn,
M. G., Benzimidazole and Related Ligands for Cu-Catalyzed Azide-
Alkyne Cycloaddition; J. Am. Chem. Soc. 2007, 129, 12696-12704.
39. Gibbons, B. H.; Edsall, J. T., Rate of Hydration of Carbon
Dioxide and Dehydration of Carbonic Acid at 25°C; J. Biol. Chem.
1963, 238, 3502-3507.
40. Tu, C. K.; Thomas, H. G.; Wynns, G. C.; Silverman, D. N.,
Hydrolysis of 4-Nitrophenyl Acetate Catalyzed by Carbonic
Anhydrase-III from Bovine Skeletal-Muscle; J. Biol. Chem. 1986,
261, 100-103.
41. Bräuer, M.; Pérez-Lustres, J. L.; Weston, J.; Anders, E.,
Quantitative Reactivity Model for the Hydration of Carbon
Dioxide by Biomimetic Zinc Complexes⊥; Inorg. Chem. 2002, 41,
1454-1463.
42. Echizen, T.; Ibrahim, M. M.; Nakata, K.; Izumi, M.; Ichikawa,
K.; Shiro, M., Nucleophilic Reaction by Carbonic Anhydrase Model
Phenylpyrazolyl)Borate; X− = Oh−, N3−, Ncs−); J. Mol. Catal. A:
Chem. 2003, 198, 99-106.
2
3. Kimura, E.; Shiota, T.; Koike, T.; Shiro, M.; Kodama, M., A
3
Zinc(II) Complex of 1,5,9-Triazacyclododecane ([12]Anen ) as a
Model for Carbonic Anhydrase; J. Am. Chem. Soc. 1990, 112, 5805-
5
811.
24. Nakata, K.; Shimomura, N.; Shiina, N.; Izumi, M.; Ichikawa,
K.; Shiro, M., Kinetic Study of Catalytic CO Hydration by Water-
Soluble Model Compound of Carbonic Anhydrase and Anion
Inhibition Effect on CO Hydration; J. Inorg. Biochem. 2002, 89,
55-266.
5. Rowlett, R. S., Structure and Catalytic Mechanism of the
2
2
2
2
Beta-Carbonic Anhydrases; Biochim. Biophys. Acta 2010, 1804,
362-373.
2
6. Silverman, D. N.; Vincent, S. H., Proton Transfer in the
Catalytic Mechanism of Carbonic Anhydras; Crit. Rev. Biochem.
Mol. Biol. 1983, 14, 207-255.
Zinc Compound: Characterization of Intermediates for CO
2
Hydration and Phosphoester Hydrolysis; J. Inorg. Biochem. 2004,
98, 1347-1360.
43. Han, R., Structural and Spectroscopic Studies on Four-,
Five-, and Six-Coordinate Complexes of Zinc, Copper, Nickel, and
2
7. Kulik, H. J.; Wong, S. E.; Baker, S. E.; Valdez, C. A.; Satcher, J.
H., Jr.; Aines, R. D.; Lightstone, F. C., Developing an Approach for
First-Principles Catalyst Design: Application to Carbon-Capture
1
5
ACS Paragon Plus Environment