Paper
Catalysis Science & Technology
Table 2 Substrate study for the coupling reaction of alkynes and acyl
chloridesa
Acknowledgements
Author M. A. Bhosale is grateful to the Council of Scientific
and Industrial Research (CSIR), India for financial support.
We thank the Department of Science and Technology (DST),
India for financial support for this work under Nano Mission
project no. SR/NM/NS-1097/2011. XPS measurements were
conducted at the Research Hub for Advanced Nano Character-
ization, the University of Tokyo, supported by the Ministry of
Education, Culture, Sports, Science and Technology (MEXT),
Japan. This work is supported by JSPS and DST under the
Japan–India Science Cooperative Program.
Entry Acyl chloride Alkyne
1
Product
Yieldb (%)
95
2
3
4
5
6
7
86
90
99
95
98
93
Notes and references
1 P. Lignier, R. Bellabarba and R. P. Tooze, Chem. Soc. Rev.,
2012, 41, 1708.
2 M. Baghbanzadeh, L. Carbone, P. D. Cozzoli and C. O. Kappe,
Angew. Chem., Int. Ed., 2011, 50, 11312.
3 (a) S. Sun, C. Kong, H. You, X. Song, B. Ding and Z. Yang,
CrystEngComm, 2012, 14, 40; (b) D. Jana and G. De,
RSC Adv., 2012, 2, 9606.
4 (a) A. J. Wang, J. J. Feng, Z. H. Li, Q. C. Liao, Z. Z. Wang and
J. R. Chen, CrystEngComm, 2012, 14, 1289; (b) Y. Zhao, Y. Li,
Z. He and Z. Yan, RSC Adv., 2013, 3, 2178.
5 (a) J. Kou, A. Saha, C. Bennett-Stamper and R. S. Varma,
Chem. Commun., 2012, 48, 5862; (b) S. U. Son, I. K. Park,
J. Park and T. Hyeon, Chem. Commun., 2004, 778.
6 S. B. Kalidindi, U. Sanyal and B. R. Jagirdar, Phys. Chem.
Chem. Phys., 2008, 10, 5870.
8
84
70
82
9
10
11
78
7 M. Diab, B. Moshofsky, I. J. L. Plante and T. Mokari,
J. Mater. Chem., 2011, 21, 11626.
12
13
14
94
87
80
63
8 (a) K. S. Park, S. D. Seo, Y. H. Jin, S. H. Lee, H. W. Shim,
D. H. Lee and D. W. Kim, Dalton Trans., 2011, 40, 9498; (b)
J. Y. Xiang, J. P. Tu, Y. F. Yuan, X. H. Huang, Y. Zhou and
L. Zhang, Electrochem. Commun., 2009, 11, 262.
9 B. Zhou, H. Wang, Z. Liu, Y. Yang, X. Huang, Z. Lu, Y. Sui
and W. Su, Mater. Chem. Phys., 2011, 126, 847.
10 M. Salavati-Niasari and F. Davar, Mater. Lett., 2009, 63, 441.
11 Z. Ai, L. Zhang, S. Lee and W. Ho, J. Phys. Chem. C, 2009,
113, 20896.
15
12 A. Radi, D. Pradhan, Y. Sohn and K. T. Leung, ACS Nano,
2010, 4, 1553.
13 (a) J. A. Dahl, B. L. S. Maddux and J. E. Hutchison, Chem.
Rev., 2007, 107, 2228; (b) J. Kou and R. S. Varma,
ChemSusChem, 2012, 5, 2435.
a
Reaction conditions: alkyne (1 mmol), acyl chloride (1.2 mmol),
nano-Cu/Cu2O (10 mol%), Et3N (2 mmol), toluene (2 mL), 90 °C,
24 h, N2 atmosphere. b GC yield.
of Cu/Cu2O NPs. This is an additive- and template-free
approach and is a faster, more economical and greener proto-
col for the synthesis of Cu/Cu2O NPs as it avoids multiple
reaction steps. Furthermore, we have shown the excellent
catalytic applicability of the synthesized Cu/Cu2O NPs for the
Sonogashira coupling reaction of alkynes and acyl chlorides.
Under the optimized reaction conditions, various derivatives
of alkyne and acyl chloride provided good to excellent yields
of the respective products.
14 (a) K. D. Bhatte, D. N. Sawant, K. M. Deshmukh and
B. M. Bhanage, Particuology, 2012, 10, 384; (b)
M. A. Bhosale, K. D. Bhatte and B. M. Bhanage, Powder
Technol., 2013, 235, 516; (c) K. D. Bhatte, P. Tambade,
S. Fujita, M. Arai and B. M. Bhanage, Powder Technol., 2010,
203, 415; (d) M. A. Bhosale and B. M. Bhanage, RSC Adv.,
2014, 4, 15122.
15 L. A. Silva, J. R. Matos and J. B. de Andrade, Thermochim.
Acta, 2000, 360, 17.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2014