Paper
PCCP
and (ii) the significantly higher apparent activation energy of
Au/ZnO for MeOH formation from CO compared to CO .
2
R. W. Fischer, J. K. Nørskov and R. Schl o¨ gl, Science, 2012,
336, 893.
5
. The relative activities for CO and CO2 hydrogenation 16 M. Behrens, Angew. Chem., Int. Ed., 2014, 53, 12022.
depend strongly on the temperature. For reaction with equimolar 17 A. Goeppert, M. Czaun, J. P. Jones, G. S. Prakash and G. A.
amounts of CO and CO the main carbon source for MeOH at
Olah, Chem. Soc. Rev., 2014, 43, 7995.
18 The George Olah Renewable Methanol Plant, 2009, www.
carbonrecycling.is.
2
reaction temperatures between 240 1C and 300 1C is always CO
2
,
but with an increasing tendency towards CO hydrogenation with
increasing temperatures. Hence, at even higher temperatures, 19 H. H. Kung, Catal. Rev.: Sci. Eng., 1980, 22, 235.
CO is expected to eventually dominate the MeOH formation 20 K. Klier, Adv. Catal., 1982, 31, 243.
under otherwise identical conditions.
21 G. Ghiotti and F. Boccuzzi, Catal. Rev.: Sci. Eng., 1987, 29, 151.
Considering (i) the similar trends when comparing the 22 J. C. J. Bart and R. P. A. Sneeden, Catal. Today, 1987, 2, 1.
activities of CO hydrogenation and CO hydrogenation as well 23 G. C. Chinchen, P. J. Denny, J. R. Jennings, M. S. Spencer
2
as (ii) the qualitatively identical influence of CO addition to a
CO /H
gas mixture on the overall MeOH formation rate at 24 A. Kiennemann and J. P. Hindermann, Stud. Surf. Sci. Catal.,
bar and at 50 bar, we are confident that the present findings
1988, 35, 181.
and K. C. Waugh, Appl. Catal., 1988, 36, 1.
2
2
5
are valid also at elevated pressures (at 50 bar), which are more 25 R. G. Herman, Stud. Surf. Sci. Catal., 1991, 64, 265.
relevant for practical applications. Overall, the results further 26 K. C. Waugh, Catal. Today, 1992, 15, 51.
underline the remarkable potential of Au/ZnO catalysts for 27 X.-M. Liu, G. Q. Lu, Z.-F. Yan and J. Beltramini, Ind. Eng.
application in the hydrogenation of CO to ‘‘green MeOH’’ as
Chem. Res., 2003, 42, 6518.
2
an energy storage molecule.
28 K. C. Waugh, Catal. Lett., 2012, 142, 1153.
2
3
9 L. C. Grabow and M. Mavrikakis, ACS Catal., 2011, 1, 365.
0 J. Graciani, K. Mudiyanselage, F. Xu, A. E. Baber, J. Evans, S. D.
Senanayake, D. J. Stacchiola, P. Liu, J. Hrbek and J. F. Sanz,
Science, 2014, 345, 546.
Acknowledgements
We gratefully acknowledge extended discussions with S. Dahl
3
3
3
1 Y. Hartadi, D. Widmann and R. J. Behm, ChemSusChem,
(Haldor Topsøe A/S).
2
015, 8, 456.
2 Y. Hartadi, D. Widmann and R. J. Behm, J. Catal., 2015,
33, 238.
3
References
3 E. L. Kunkes, F. Studt, R. Schl o¨ gl, F. Abild-Pedersen and
1
2
3
4
5
R. Schl o¨ gl, Angew. Chem., Int. Ed., 2011, 50, 6424.
R. Schl o¨ gl, Nachr. Chem., 2012, 60, 1.
M. Behrens, J. Catal., 2015, 328, 43.
34 J. Toyir, P. R. de la Piscina, J. L. G. Fierro and N. Homs, Appl.
Catal., B, 2001, 29, 207.
35 J. Sloczynski, R. Grabowski, A. Kozlowska, P. Olszewski,
J. Stoch, J. Skrzypek and M. Lachowska, Appl. Catal., A,
2004, 278, 11.
36 O. Martin, C. Mondelli, D. Curulla-Ferr ´e , C. Drouilly,
R. Hauert and J. Perez-Ramirez, ACS Catal., 2015, 5, 5607.
37 X.-L. Liang, X. Dong, G.-D. Lin and H.-B. Zhang, Appl. Catal.,
B, 2009, 88, 315.
G. A. Olah, Angew. Chem., Int. Ed., 2004, 44, 2636.
G. A. Olah, Angew. Chem., Int. Ed., 2013, 52, 104.
Methanol: The Basic Chemical and Energy Feedstock of the
Future, ed. M. Bertau, H. Offermanns, L. Plass, F. Schmidt
and H.-J. Wernicke, Springer Verlag, Heidelberg, 2013.
J. B. Hansen and P. E. Højlund Nielsen, Handbook of Hetero-
geneous Catalysis, Wiley VCH, 2008, vol. 13.13, p. 2920.
X. Xu and J. A. Moulijn, Energy Fuels, 1996, 10, 305.
6
7
8
H. Yang, Z. Xu, M. Fan, R. Gupta, R. B. Slimane, A. E. Bland 38 L. Jia, J. Gao, W. Fang and Q. Li, Catal. Commun., 2009,
and I. Wright, J. Environ. Sci., 2008, 20, 14.
10, 2000.
A. J. Hunt, E. H. K. Sin, R. Marriott and J. H. Clark, 39 Z. S. Hong, Y. Cao, J. F. Deng and K. N. Fan, Catal. Lett.,
ChemSusChem, 2010, 3, 306.
2002, 82, 37.
0 G. Ferey, C. Serre, T. Devic, G. Maurin, H. Jobic, P. L. Llewellyn, 40 R. Raudaskoski, M. V. Niemel ¨a and R. L. Keiski, Top. Catal.,
9
1
G. De Weireld, A. Vimont, M. Daturi and J. S. Chang, Chem. Soc.
Rev., 2011, 40, 550.
1 W. Wang, S. Wang, X. Ma and J. Gong, Chem. Soc. Rev., 2011,
2007, 45, 57.
41 P. Gao, L. Zhong, L. Zhang, H. Wang, N. Zhao, W. Wei and
Y. Sun, Catal. Sci. Technol., 2015, 5, 4365.
1
1
1
1
1
4
0, 3703.
2 M. Aresta, in Activation of Small Molecules, ed. W. B. Tolman,
006, vol. 1, p. 1.
42 Z. Q. Wang, Z. N. Xu, S. Y. Peng, M. J. Zhang, G. Lu,
Q. S. Chen, Y. Chen and G. C. Guo, ACS Catal., 2015, 5, 4255.
43 N. Y. Topsøe and H. Topsøe, Top. Catal., 1999, 8, 267.
2
3 G. A. Olah, A. Goeppert and G. K. Suryia Prakash, J. Org. 44 S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff and
Chem., 2009, 74, 487.
J. Sehested, Angew. Chem., Int. Ed., 2014, 53, 5941.
4 G. A. Olah, G. S. Prakash and A. Goeppert, J. Am. Chem. Soc., 45 F. Studt, M. Behrens, E. L. Kunkes, N. Thomas, S. Zander,
2011, 133, 12881.
A. Tarasov, J. Schumann, E. Frei, J. B. Varley, F. Abild-
Pedersen, J. K. Nørskov and R. Schl o¨ gl, ChemCatChem,
2015, 7, 1105.
5 M. Behrens, F. Studt, I. Kasatkin, S. K u¨ hl, M. H ¨a vecker, F. Abild-
Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, M. Tovar,
Phys. Chem. Chem. Phys.
This journal is ©the Owner Societies 2016