C O M M U N I C A T I O N S
The small-molecule-mediated anchoring of cdk4 upon IF de-
scribed here represents an unexploited paradigm for altering the
activity of cellular proteins. Studies to elucidate the details of the
molecular associations of phorboxazole derivatives and their cellular
receptors and the effects of these interactions upon cell cycle
progression are continuing.
Acknowledgment. Financial support from the NIH (R01
CA099950) is gratefully acknowledged. We thank B. Wang for
helpful discussions, and T. Sch u¨ tz for assistance with protein gel
analysis, cloning, and expression.
Supporting Information Available: Synthetic procedures and
characterization data, and protocols for cellular studies and protein
analyses. This material is available free of charge via the Internet at
http://pubs.acs.org.
Figure 3. Affinity analyses of 5, 6, and 9 in HeLa cell cytosolic fractions.
a) Fluorescent gel analysis depicting fluorescence from 5 and 6 bound to
protein targets, including a native blot analysis using anti-DYE antibody
denoting bound complex. (b) Coomassie-stained SDS-PAGE gel depicting
the pull down of a protein with mass of 32 kDa with an anti-KRT10 affinity
resin in the presence of 5 and 6. (c) Repetition of the pull-down assay in
(
References
(b) using purified cdk4. (d) Blot analysis depicting cdk4 isolated using a
(
1) (a) Searle, P. A.; Molinski, T. F. J. Am. Chem. Soc. 1995, 117, 8126. (b)
Searle, P. A.; Molinski, T. F.; Brzezinski, L. J.; Leahy, J. W. J. Am. Chem.
Soc. 1996, 118, 9422. (c) Molinski, T. F. Tetrahedron Lett. 1996, 37,
KRT10 affinity resin.
7879.
affinities of 5 and 6 were determined by equilibrium dialysis,
(2) Capon, R. J.; Skene, C.; Liu, E. H.; Lacey, E.; Gill, J. H.; Heiland, K.;
yielding association constants (K
and 0.2 and 0.3 nM to KRT18, respectively. Probe 6 was also
assayed against cloned and expressed KRT1 (K ) 32 nM) and
KRT9 (K ) 2.3 nM). Control experiments using 7, 8, and 9 (Figure
) showed insignificant affinity (K > 100 µM) to either KRT10
or KRT18.
a
) of 1.2 and 3.2 nM to KRT10,
Friedel, T. Nat. Prod. Res. 2004, 18, 305.
(3) Uckun, F. M.; Forsyth, C. J. Bioorg. Med. Chem. Lett. 2001, 11, 1181.
(
4) Uckun, F. M.; Narla, R. M.; Forsyth, C. J.; Lee, C. S.; Ahmed, F.; Cink,
R. D. U.S. Patent 6797721, 2004; WO 01/36394, 2001; Priority: US 99-
165452 19991115.
a
a
(
5) (a) Forsyth, C. J.; Ahmed, F.; Cink, R. D.; Lee, C. S. J. Am. Chem. Soc.
2
a
1998, 120, 5597. (b) Evans, D. A.; Fitch, D. M.; Smith, T. E.; Cee, V. J.
J. Am. Chem. Soc. 2000, 122, 10033. (c) Smith, A. B.; Minbiole, K. P.;
Verhoest, P. R.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 10942. (d)
Pattenden, G.; Gonz a´ lez, M. A.; Little, P. B.; Millan, D. S.; Plowright,
A. T.; Tornos, J. A.; Ye, T. Org. Biomol. Chem. 2003, 1, 4173. (e)
Williams, D. R.; Kiryanov, A. A.; Emde, U.; Clark, M. P.; Berliner, M.
A.; Reeves, J. T. Angew. Chem., Int. Ed. 2003, 42, 1258. (f) Li, D.-R.; et
al. Chem.sEur. J. 2006, 12, 1185.
We then screened for proteins whose association with KRT10
was affected by 5 and 6. First, resins coated with an anti-KRT10
antibody were used to isolate protein complexes from HeLa cell
lysates exposed to 5 and 6. SDS-PAGE analysis of the proteins
returned from these experiments revealed a second major protein
(6) (a) Sandler, J. S.; Fenical, W.; Gulledge, B. M.; Chamberlin, A. R.; La
Clair, J. J. J. Am. Chem. Soc. 2005, 127, 9320. (b) La Clair, J. J.; et al.
ChemBioChem 2006, in press.
(ca. 32 kDa) that was associated with KRT10 in the presence of
probes 5 and 6 (Figure 3b). LC-MS/MS analysis indicated that
(7) Synthesis and characterization of 3 and 4 are documented in: Lee, C. S.
Ph.D. Thesis, University of Minnesota, Minneapolis, MN, 1999.
this protein was cyclin-dependent kinase 4 (cdk4), an essential
(8) Smith, A. B., III; Razler, T. M.; Pettit, G. R.; Chapuis, J.-C. Org. Lett.
16
component of G1-S phase cell cycle progression and a validated
anticancer drug target.17 This assignment was confirmed by
2005, 7, 4403.
(9) Chen, J.; Ying, L.; Hansen, T. M.; Engler, M. M.; Lee, C. S.; La Clair,
J. J.; Forsyth, C. J. Bioorg. Med. Chem. Lett. 2006, 16, 901.
10) (a) Huber, L. A.; Pfaller, K.; Vietor, I. Circ. Res. 2003, 92, 962. (b) Chen,
X.; Murphy, R. F. J. Biomed. Biotechnol. 2005, 4, 87.
repetition of the binding experiments in vitro using purified cdk4
(
(
(Figure 3c). Next, HeLa cell lysates were screened using a KRT10
11) Images were collected at 100 ms/image at 30 min intervals over 24 h for
each compound. (a) Herman, P.; Maliwal, B. P.; Lin, H. J.; Lakowicz, J.
R. J. Microsc. 2001, 203, 176. (b) Repetto, L.; Piano, E.; Pontiggia, C.
Opt. Lett. 2004, 29, 1132.
12) B o¨ cker, W.; Gantenberg, H.-W.; M u¨ ller, W.-U.; Streffer, C. Phys. Med.
Biol. 1996, 41, 523.
affinity gel. Cdk4 was repetitively returned after extraction of cell
lysates exposed to 5 and 6, but not 9 (Figure 3d). These experiments
provide conclusive evidence that the phorboxazole probes 5 and 6
induce an association between cdk4 and KRT10. Associations were
confirmed by determination of in vitro binding affinities of 5, 6,
(
(
13) Sequencing analyses via trypsin digestion, nanoLC-MS/MS, and Swiss
protein database search were performed at the Mayo Proteomics Research
Center, Mayo Clinic College of Medicine, Rochester, MN.
14) Franke, W. W.; Schmid, E.; Weber, K.; Osborn M. Exp. Cell. Res. 1979,
and 9 to cdk4 by equilibrium dialysis. Analogues 5 (K
and 6 (K ) 120 nM) bound tightly to cdk4, while control 9 (K
µM) did not.
Perturbation of cdk4 structure and function is well-known to
a
) 350 nM)
(
(
a
a
>
118, 95.
5
15) (a) Linder, S.; Havelka, A. M.; Ueno, T.; Shoshan, M. C. Cancer Lett.
2004, 214, 1. (b) Scheuemann, P.; Hosch, S. B.; Izbicki, J. R. Dis.
Esophagus 2001, 14, 85. (c) Chen, P. H.; Ornelles, D. A.; Shenk, T. J.
Virol. 1993, 67, 3508.
18
inhibit cell cycle progression. The sequestration of cdk4 upon
cytosolic IF proteins19 induced by 1-6 would reduce the amount
of free cellular cdk4 and prevent nuclear translocation of active
cdk4-cyclin D1 complexes required for phosphorylation of the
retinoblastoma (Rb) protein and consequent cell cycle progression.16
In a similar model, the human papillomavirus type 16 protein E1-
(16) (a) Kato, J.; Matsushime, H.; Hiebert, S. W.; Ewen, M. E.; Sherr, C. J.
Genes DeV. 1993, 7, 331. (b) Sherr, C. J. Science 1996, 274, 1672.
(
17) Grillo, M.; Bott, M. J.; Khandke, N.; McGinnis, J. P.; Miranda, M.;
Meyyappan, M.; Rosfjord, E. C.; Rabindran, S. K. Breast Cancer Res.
Treat. 2005, Dec 1, 1.
(
18) (a) Paramio, J. M.; Casanova, M. L.; Segrelles, C.; Mittnacht, S.; Lane,
E. B.; Jorcano, J. L. Mol. Cell Biol. 1999, 19, 3086. (b) Mettus, R. V.;
Rane, S. G. Oncogene 2003, 22, 8413. (c) Lee, H. Z.; Leung, H. W.; Lai,
M. Y.; Wu, C. H. Anticancer Res. 2005, 25, 959. (d) Tao, G. Z.; Rott, L.
S.; Lowe, A. W.; Omary, M. B. J. Biol. Chem. 2002, 277, 19295.
2
E4 is believed to cause G cell cycle arrest by retention of cdk1/
cyclin B1 upon cytoplasmic keratin filaments.20 In contrast,
sequestration of PKB/PKCς upon KRT10 apparently occurs without
(19) Coulombe, P. A.; Wong, P. Nat. Cell Biol. 2004, 6, 699.
(
(
20) Davy, C. E.; et al. J. Virol. 2005, 79, 3998.
21) Paramio, J. M.; Segrelles, C.; Ruiz, S.; Jorcano, J. L. Mol. Cell Biol. 2001,
21, 7449.
21
induction by xenobiotic small molecules. This results in inhibition
of cyclin D1 expression and Rb phosphorylation via the phosphoino-
21
(22) Li, J.; Joo, H. S.; Tsai, M.-D. Mol. Biochem. 2003, 42, 13476.
sitide 3-kinase signal transduction pathway. Several endogenous
proteins are known to inhibit cdk4 activity via direct binding.22
JA057087E
J. AM. CHEM. SOC.
9
VOL. 128, NO. 12, 2006 3859