2
3
M. Frey, S. G. Harris, J. M. Holmes, D. A. Nation, S. Parsons,
P. A. Tasker and R. E. P. Winpenny, Chem. Eur. J., 2000, 6,
1
407.
S. S. De Silva, P. A. Camp, D. K. Henderson, D. C. R. Henry,
H. McNab, P. A. Tasker and P. Wight, Chem. Commun., 2003,
1
702.
4
5
A. Clearfield, Prog. Inorg. Chem., 1998, 47, 371.
(a) A. Clearfield, Inorganic Ion Exchange Materials, CRC Press,
Boca Raton, FL, 1982; (b) G. Alberti, Acc. Chem. Res., 1978, 11,
1
63; (c) J. D. Wang, A. Clearfield and G.-Z. Peng, Mater. Chem.
Phys., 1993, 35, 208.
6
7
(a) B.-Z. Wan, R. G. Anthony, G.-Z. Peng and A. Clearfield,
J. Catal., 1994, 19, 101; (b) D. Deniaud, B. Schollorn, D. Mansuy,
J. Rouxel, P. Battion and B. Bujoli, Chem. Mater., 1995, 7, 995.
(a) F. Fredoueil, D. Massiot, P. Janvier, F. Gingle, M. Bujoli-Doeuff,
M. Evain, A. Clearfield and B. Bujoli, Inorg. Chem., 1999, 38,
1831; (b) G. Cao, V. M. Lynch and L. N. Yacullo, Chem. Mater.,
½
Fig. 4 Magnetic susceptibility, χ (᭺) and (8χT) (᭹) of 1; the solid
1
993, 5, 583.
8 (a) G. Alberti and R. Polombari, Solid State Ionics, 1989, 35, 153;
b) G. Alberti, M. Casciola and R. Polombari, Solid State Ionics,
line represents a least-squares fit of the copper tetramer expression to
½
values of (8χT) , as discussed in the text.
(
2
ϩ
2ϩ
1992, 52, 291.
instance arising from monomeric Cu species. All Cu ions
were assumed to have the same value of g = 2.12, chosen to be
consistent with the EPR data. The result of this procedure is
displayed in Fig. 4 for |J | = 17.3 (0.4) K, J = Ϫ432 (12) K,
9
S. B. Ungashe, W. L. Wilson, H. E. Katz, G. R. Scheller and
T. M. Putvinsky, J. Am. Chem. Soc., 1992, 114, 8717.
10 E. K. Brechin, R. A. Coxall, A. Parkin, S. Parsons, P. A. Tasker and
R. E. P. Winpenny, Angew. Chem., Int. Ed., 2001, 40, 2700.
1
Ϫ1
2
1
1 I. Khan and J. Zubieta, Prog. Inorg. Chem., 1995, 43, 1–149 and
χTIP = 60 (20) emu mol and 3 mol% paramagnetic (S = ½)
impurity. We have chosen to represent the optimised form
of the expression in Fig. 4 as the variation of (8χT) (which
is approximately the magnetisation of each copper ion) with
temperature because it is more sensitive to the optimised
parameters.
references therein.
½
12 (a) V. Chandrasekhar, S. Kingsley, B. Hatigan, M. K. Lam and
A. L. Rheingold, Inorg. Chem., 2002, 41, 1030; (b) Y. Yang, J. Pinkas,
M. Nolyemeyer, H.-G. Schmidt and H. W. Roesky, Angew. Chem.,
Int. Ed., 1999, 38, 664.
13 M. G. Walawalker, H. W. Roesky and R. Murgugavel, Acc. Chem.
Res., 1999, 32, 117 and references therein.
4 V. Chandrasekhar and S. Kingsley, Angew. Chem., Int. Ed., 2000,
39, 2320.
5 E. I. Tolis, M. Helliwell, S. Langley, J. Raftery and R. E. P.
Winpenny, Angew. Chem., Int. Ed., 2003, 42, 2556.
1
Conclusions
1
In the context of our original intention to develop H mbpp as a
5
surface modifying ligand, we have shown that it can function in
a trinucleating mode, with the possibility of further complex
stabilisation through hydrogen bonding of the protonated
phosphonate arm to surface oxides. Further deprotonation
would allow the coordination of additional surface metal ions.
The central phenolic oxygen can address metal oxide surfaces
with an M ؒ ؒ ؒ M separation of ca 3.1 Å which compares with
16 J. Zhang and A. Clearfield, Inorg. Chem., 1992, 31, 2821.
17 G. M. Sheldrick, SHELXTL Programs for Crystal Structure
Analysis (Release 97-2), Göttingen University, Germany, 1998.
1
1
8 R. H. Blessing, Acta Crystallogr., Sect. A, 1995, 51, 33.
9 SADABS: Area-Detector Absorption Correction, Siemens
Industrial Automation, Inc., Madison, WI, 1996.
2
0 V. Bohmer and W. Vogt, Helv. Chim. Acta, 1993, 76, 139.
21 For examples see: (a) K. K. Palkina, N. E. Kuz’mina and
V. T. Orlova, Zh. Neorg. Khim., 1994, 39, 1133; (b) R. Cuesta, J. Ruiz,
J. M. Moreno and E. Colacio, Inorg. Chim. Acta, 1994, 227, 43;
28
the Cu ؒ ؒ ؒ Cu distances found in the CuO mineral tenorite of
.9005(3), 3.0830(4) and 3.1734(4) Å.
2
(
c) M. Koman, E. Jona and D. Nagy, Z. Kristallogr., 1995, 210, 873.
2
2 For examples see: H. Uekusa, S. Ohba, Y. Saito, M. Kato, T. Tokii
and Y. Muto, Acta Crystallogr., Sect. C, 1989, 45, 377.
3 G. Ferguson and J. F. Gallagher, Acta Crystallogr., Sect. C, 1993, 49,
1024.
Acknowledgements
2
The authors would like to thank the national EPR service in
Manchester for the Q-band EPR spectrum of 1 and the EPSRC
24 A. Jarski and E. C. Lingafelter, Acta Crystallogr., 1964, 17,
1
109.
(
UK) for support (D. K. H. and P. A. L.).
2
2
5 K. Burger and I. Egyed, J. Inorg. Nucl. Chem., 1965, 27, 2361.
6 G. V. Rubenacker, J. E. Drumheller, K. Emerson and R. D. Willett,
J. Magn. Magn. Mater., 1986, 54–57, 1483.
7 A. Ayllon, I. C. Santos, R. T. Henriques, M. Almeida, L. Alcacer
and M. T. Duarte, Inorg. Chem., 1996, 35, 168.
References
2
1
M. Frey, S. G. Harris, J. M. Holmes, D. A. Nation, S. Parsons,
P. A. Tasker, S. J. Teat and R. E. P. Winpenny, Angew. Chem., Int.
Ed., 1998, 37, 3246.
28 S. Asbrink and L.-J. Norrby, Acta Crystallogr., Sect. B, 1970,
26, 8.
4
274
D a l t o n T r a n s . , 2 0 0 3 , 4 2 7 1 – 4 2 7 4