Angewandte
Chemie
coordinated alkyne and the elimination of H O gives complex
2
1
4, an end-on copper acetylide with a coordinated iminium
ion. The addition of the acetylide to the iminium salt in the
coordination sphere of the chiral copper(i) complex leads to
the chiral propargylamine 5 and regenerates the catalyst 10.
In summary, we have shown that a wide range of chiral
propargylamines can be prepared in a one-pot three-compo-
nent reaction in good yield and good enantioselectivity.
Further applications in natural-product synthesis and mech-
anistic studies of this reaction are currently underway in our
laboratories.
Scheme 2. Diastereoselective three-component reactions.
Experimental Section
(
À)-5a: A dry and argon-flushed 10-mL flask equipped with a
magnetic stirrer and a septum was charged with copper(i) bromide
3.6 mg, 0.0250 mmol) and (R)-quinap (12.1 mg, 0.0275 mmol).
(
Anhydrous toluene (2 mL) was added, the mixture was stirred at
room temperature for 30 min. Molecular sieves (4 , 0.3 g) and n-
decane (30 mg, as internal standard) were added, followed by
phenylacteylene (51 mg, 0.5 mmol), 3-methylbutanal (43 mg,
0.5 mmol), and dibenzylamine (99 mg, 0.5 mmol). The reaction
mixture was stirred for 70 h at room temperature. The molecular
sieves were removed by filtration and washed with diethyl ether. The
crude product was concentrated in vacuo and purified by chromatog-
raphy on silica gel (pentane:diethyl ether= 98:2) yielding the
propargylamine ((À)-5a) as a colorless oil (180 mg, 98%, 86% ee).
Received: August 6, 2003[Z52578]
Published Online: November 11, 2003
Keywords: alkynes · asymmetric catalysis · CÀH activation ·
.
multicomponent reactions · propargylamines
Figure 1. Nonlinear effects in the three-component reaction leading to
[1] a) R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley,
Weinheim, 1994; b) G. Helmchen, R. W. Hoffmann, J. Mulzer, E.
Schaumann, Houben-Weyl: Stereoselective Synthesis, Thieme,
Stuttgart 1996; c) E. N. Jacobsen, A. Pfaltz, H. Yamamoto,
Comprehensive Asymmetric Catalysis, Springer, Berlin 1999;
d) R. A. Aitken, S. N. KilØnyi, Asymmetric Synthesis,
Blackie A&P, London, 1992.
5
g [Eq. (1)]. %ee : enatiomeric excess of the ligand, %ee5g: enantio-
l
meric excess of the product.
[
2] For recently described three-component reactions, see:
a) S. Kamijo, Y. Yamamoto, J. Am. Chem. Soc. 2002, 124,
11940; S. Kamijo, T. Jin, Y. Yamamoto, J. Am. Chem.
Soc. 2001, 123, 9453; b) F. Bertozzi, M. Gustafsson, R.
Olsson, Org. Lett. 2002, 4, 4333; c) G. W. Kabalka, Z. Wu,
Y. Ju, Org. Lett. 2002, 4, 3415; d) T.-P. Loh, S.-L. Chen,
Org. Lett. 2002, 4, 3647; e) A. Dömling, I. Ugi, Angew.
Chem. 2000, 112, 3300; Angew. Chem. Int. Ed. 2000, 39,
3168; f) B. List, P. Pojarliev, W. T. Biller, H. J. Martin, J.
Am. Chem. Soc. 2002, 124, 827; g) U. Bora, A. Saikia,
R. C. Boruah, Org. Lett. 2003, 5, 435; h) R. Dhawan,
R. D. Dghaym, B. A. Arndtsen, J. Am. Chem. Soc. 2003,
125, 1474; i) C. Cao, Y. Shi, A. L. Odom, J. Am. Chem.
Soc. 2003, 125, 2880; j) S. J. Patel, T. F. Jamison, Angew.
Chem. 2003, 115, 1402, Angew. Chem. Int. Ed. 2003, 42,
1364; k) J. R. Porter, J. F. Traverse, A. H. Hoveyda, M. L.
Snapper, J. Am. Chem. Soc. 2001, 123, 10409.
[
3] a) B. M. Trost, Angew. Chem. 1995, 107, 285; Angew.
Chem. Int. Ed. Engl. 1995, 34, 259; b) B. M. Trost, Science
1991, 254, 1471.
[
4] a) C. Koradin, K. Polborn, P. Knochel, Angew. Chem.
2002, 114, 2651; Angew. Chem. Int. Ed. 2002, 41, 2535;
Scheme 3. Tentative mechanism of the three-component reaction.
Angew. Chem. Int. Ed. 2003, 42, 5763 –5766
ꢀ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
5765