M. A. F. M. Rahman, Y. Jahng
FULL PAPER
were washed with water successively and dried with anhydrous
MgSO4. The solvent was evaporated under reduced pressure to pro-
vide the crude product, which was chromatographed on silica gel
with CH2Cl2. The early fractions afforded the desired geminal di-
acetate as colorless liquid [57% yield, Rf = 0.6 (CH2Cl2)], which
could be crystallized in the refrigerator. M.p. 54–55 °C (ref.[23] m.p.
52–53 °C). 1H NMR (CDCl3, 250 MHz): δ = 7.70 (s, 1 H), 7.44 (d,
J = 0.8 Hz, 1 H), 6.52 (d, J = 2.2 Hz, 1 H), 6.37 (dd, J = 3.2,
1.8 Hz, 1 H), 2.12 (s, 6 H) ppm. 13C NMR (CDCl3, 62.5 MHz): δ
= 186.4, 147.8, 143.6, 110.3, 109.7, 83.4, 20.7 ppm. The latter frac-
tions afforded 3-(fur-2-yl)crotonic acid (5) as colorless liquid [10%
Acknowledgments
Support from a Korean Research Foundation Grant (KRF-2005-
041-E00496) is gratefully acknowledged.
[1] T. W. Greene, P. G. Wuts, Protective Groups in Organic Synthe-
sis, 3rd ed., John Wiley & Sons, New York, 1999, p. 306.
[2] K. S. Kochhar, B. S. Bal, R. P. Deshpande, S. N. Rajadhyaksha,
H. W. Pinnick, J. Org. Chem. 1983, 48, 1765–1767.
[3] a) C. Narayana, S. Padmanabhan, G. W. Kabalka, Tetrahedron
Lett. 1990, 31, 6977–6978; b) R. S. Varma, A. K. Chartterjee,
M. Varma, Tetrahedron Lett. 1993, 34, 3207–3210; c) T. S. Jin,
X. Sun, T. S. Li, J. Chem. Res. (S) 2000, 128–129; d) R. G.
Sudhakar, R. Radhika, N. Parvathi, D. S. Iyengar, Indian J.
Chem. (B) 2002, 41, 863–864; e) M. A. Reddy, L. R. Reddy,
N. Bhanumathi, R. K. Rao, Synth. Commun. 2002, 32, 273–
277.
1
yield, Rf = 0.35 (CH2Cl2)]. H NMR (CDCl3, 250 MHz): δ = 7.52
(d, J = 16.5 Hz, 1 H, 3-H), 7.50 (d, J = 0.7 Hz, 1 H, 5Ј-H), 6.67
(d, J = 3.3 Hz, 1 H, 3Ј-H), 6.50 (dd, J = 3.3, 1.7 Hz, 1 H, 4Ј-H),
6.33 (d, J = 15.6 Hz, 1 H, 2-H) ppm. 13C NMR (CDCl3,
62.5 MHz): δ = 172.3, 150.6, 145.3, 133.0, 115.8, 114.8, 112.5 ppm.
MS (ESI): calcd. for C7H6O3 139 [M + H]+; found 139.
[4] a) B. B. Sinder, S. G. Amin, Synth. Commun. 1978, 8, 117–125;
b) R. R. Gallucci, R. C. Going, J. Org. Chem. 1982, 47, 3517–
3521; c) A. Ghribi, A. Alexakis, J. F. Normant, Tetrahedron
Lett. 1984, 25, 3079–3082; d) B. M. Trost, J. Vercauteren, Tet-
rahedron Lett. 1985, 26, 131–134; e) L. K. Sydnes, M. Sand-
berg, Tetrahedron 1997, 53, 12679–12690; f) M. Sandberg,
L. K. Sydnes, Org. Lett. 2000, 2, 687–689.
[5] V. Kavala, B. K. Patel, Eur. J. Org. Chem. 2005, 441–451.
[6] R. Wegscheider, E. Späth, Monatsh. Chem. 1909, 30, 825–869.
[7] a) E. Knoevenagel, Justus Liebigs Ann. Chem. 1914, 402, 111–
115; b) F. Freeman, E. M. Karcherski, J. Chem. Eng. Data
1977, 22, 355–357; c) T. S. Jin, G. Sun, Y.-W. Li, T.-S. Li, Green
Chem. 2002, 4, 256–258.
[8] a) E. H. Man, J. J. Sanderson, C. R. Hauser, J. Am. Chem. Soc.
1950, 72, 847–848; b) S. V. Lieberman, R. Connor, Org. Syn.,
Coll. Vol. II 1951, 441–443; c) D. Davey, J. R. Gwilt, J. Chem.
Soc. 1957, 1008–1014; d) J. K. Michie, J. A. Miller, Synthesis
1981, 824–825; e) A. J. Fry, A. K. Rho, L. R. Sherman, C. S.
Sherwin, J. Org. Chem. 1991, 56, 3283–3286; f) N. Deka, R.
Borah, D. J. Kalita, J. C. Sarma, J. Chem. Res (S) 1998, 94–
95; g) V. K. Aggarwal, S. Fonquerna, G. P. Vennall, Synlett
1998, 849–850; h) K. L. Chandra, P. Saravanan, V. K. Singh,
Synlett 2000, 359–360; i) M. D. Carrigan, K. J. Eash, M. C.
Oswald, R. S. Mohan, Tetrahedron Lett. 2001, 42, 8133–8135;
j) M. Curini, F. Epifano, M. C. Marcotullio, O. Rosati, M.
Nocchetti, Tetrahedron Lett. 2002, 43, 2709–2711; k) B. Kar-
imi, R.-R. Ebrahimian, H. Seradj, Synth. Commun. 2002, 32,
669–673; l) J. S. Yadav, B. V. Subba Reddy, Ch. Srinivas, Synth.
Commun. 2002, 32, 1175–1180; m) C. Wang, M. Li, Synth.
Commun. 2002, 32, 3469–3474; n) J. S. Yadav, B. V. Reddy, S. C.
Venugopal, T. Ramalingam, Synlett 2002, 604–606; o) B. Kar-
imi, J. Maleki, J. Org. Chem. 2003, 68, 4951–4954; p) B. C.
Ranu, J. Dutta, A. Das, Chem. Lett. 2003, 32, 366–367; q) G. P.
Romanelli, H. J. Thomas, G. T. Baronetti, J. C. Autino, Tetra-
hedron Lett. 2003, 44, 1301–1303; r) H. Firouzabadi, N. Iran-
poor, F. Nowrouzi, K. Amani, Tetrahedron Lett. 2003, 44,
3951–3954; s) T. Hirao, S. Santhitikul, H. Takeuchi, A. Ogawa,
H. Sakurai, Tetrahedron 2003, 59, 10147–10152; t) D. H.
Aggen, J. N. Arnold, P. D. Hayes, N. J. Smoter, R. S. Mohan,
Tetrahedron 2004, 60, 3675–3679; u) Y. Yin, Z.-H. Zhang, Y.-
M. Wang, M.-L. Pang, Synlett 2004, 1727–1730; v) T. Jin, G.
Feng, M. Yang, T. Li, Synth. Commun. 2004, 34, 1645–1651;
w) B. M. Reddy, P. M. Sreekanth, A. Khan, Synth. Commun.
2004, 34, 1839–1845.
Benzylidene Dipropionate (6a): Colorless liquid [78% yield, Rf = 0.2
(CH2Cl2)]. H NMR (CDCl3, 250 MHz): δ = 7.71 (s, 1 H), 7.52–
7.49 (m, 2 H), 7.40–7.37 (m, 3 H), 2.40 (overlapped q, J = 6.7 Hz,
4 H), 1.14 (t, J = 7.5 Hz, 6 H) ppm. 13C NMR (CDCl3, 62.5 MHz):
δ = 172.2, 135.6, 129.6, 128.5, 126.5, 89.5, 27.3, 8.6 ppm. MS (ESI):
calcd. for C13H16O4 237 [M + H]+; found 237.
1
3-Bromobenzylidene Dipropionate (6b): Colorless liquid [82% yield,
1
Rf = 0.27 (CH2Cl2)]. H NMR (CDCl3, 250 MHz): δ = 7.64 (s, 1
H), 7.63 (s, 1 H), 7.50 (dt, J = 8.1, 1.3 Hz, 1 H), 7.40 (dt, J = 7.8,
1.5 Hz, 1 H), 7.24 (t, J = 8.0 Hz, 1 H), 2.40 (q, J = 7.7 Hz, 2 H),
2.39 (q, J = 7.7 Hz, 2 H), 2.13 (t, J = 7.7 Hz, 6 H) ppm. 13C NMR
(CDCl3, 62.5 MHz): δ = 172.1, 137.8, 132.7, 130.1, 129.7, 125.4,
122.5, 88.6, 27.3, 8.7 ppm. MS (ESI): calcd. for C13H15BrO4 316
[M + H]+; found 316.
4-Methoxybenzylidene Dipropionate (6c): Colorless liquid [72%
1
yield, Rf = 0.4 (CH2Cl2)]. H NMR (CDCl3, 250 MHz): δ = 7.65
(s, 1 H), 7.42 (dm, J = 8.5 Hz, 2 H), 6.87 (dm, J = 8.5 Hz, 2 H),
3.81 (s, 3 H), 2.37 (q, J = 7.7 Hz, 2 H), 2.35 (q, J = 7.7 Hz, 2 H),
2.13 (t, J = 7.7 Hz, 6 H) ppm. 13C NMR (CDCl3, 62.5 MHz): δ =
172.2, 160.6, 128.2, 128.1, 114.2, 89.8, 55.6, 27.8, 9.2 ppm. MS
(ESI): calcd. for C14H18O4 267 [M + H]+; found 267.
4-Nitrobenzylidene Dipropionate (6d): Colorless liquid [82% yield,
1
Rf = 0.4 (CH2Cl2)]. H NMR (CDCl3, 250 MHz): δ = 8.24 (dm, J
= 8.5 Hz, 2 H), 7.74 (s, 1 H), 7.67 (dm, J = 8.5 Hz, 2 H), 2.43 (q,
J = 7.5 Hz, 2 H), 2.42 (q, J = 7.6 Hz, 2 H), 1.15 (t, J = 7.7 Hz, 6
H) ppm. 13C NMR (CDCl3, 62.5 MHz): δ = 172.1, 142.2, 127.8,
123.8, 123.7, 88.2, 27.3, 8.6 ppm. MS (ESI): calcd. for C13H15NO6
282 [M + H]+; found 282.
Study of Relative Reactivity: An equimolar mixture of 4-nitrobenz-
aldehyde (1.51 g, 10 mmol) and 4-methoxybenzaldehyde (1.36 g,
10 mmol) was refluxed with 1 equiv. of Ac2O (1.02 g, 10 mmol) for
12 h. Work up as described above in the general method afforded a
mixture of 4-nitrobenzylidene diacetate and 4-methoxybenzylidene
diacetate in 77% yield. Each compound was separated by column
chromatography with CH2Cl2/n-hexane (1:1) to give 1.46 g (57%
yield) of 4-nitrobenzylidene diacetate and 0.48 g (20% yield) of 4-
methoxybenzylidene diacetate.
[9] a) J. W. Scheeren, W. J. M. Tax, R. Schijf, Synthesis 1973, 151–
153; b) B. F. Mirjalili, M. A. Zolfigol, A. Bamoniric, Phospho-
rus Sulfur, Silicon Relat. Elem. 2004, 179, 19–24.
[10] N. Deka, D. J. Kalita, R. Borah, J. C. Sarma, J. Org. Chem.
1997, 62, 1563–1564.
[11] B. Karimi, H. Seradj, G. R. Ebrahimian, Synlett 2000, 623–
624.
[12] G. A. Olah, A. K. Mehrotra, Synthesis 1982, 962–963.
Study of Chemoselectivity: An equimolar mixture of benzaldehyde
(1.06 g, 10 mmol) and acetophenone (1.20 g, 10 mmol) was re-
fluxed with 1 equiv. of Ac2O (1.02 g, 10 mmol) for 12 h. Work up
as described above in the general method afforded benzylidene di-
acetate (1.66 g, 80% yield), while acetophenone was quantitatively
recovered.
382
www.eurjoc.org
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2007, 379–383