5
Supplementary Material
Experimental procedures, characterization, 1H, 13C NMR spectra, X-ray crystallography (PDF)
References
[1] (a) D. Crich, A. Banerjee, Acc. Chem. Res. 40 (2007) 151. (b) P. Ruiz-Sanchis, S.A. Savina, F. Alberico, M. Álvarez, Chem. Eur. J. 17 (2011) 1388.
[2] R. Raju, A.M. Piggott, X.-C. Huang, R.J. Capon, Org. Lett. 13, (2011) 2770.
[3] (a) A. Steven, L.E. Overman, Angew. Chem. Int. Ed. 46 (2007) 5488. (b) P. Lindovska, M. Movassaghi, J. Am. Chem. Soc. 139 (2017) 17590.
[4] (a) P. Ruiz-Sanchis, S.A. Savina, G.A. Acosta, F. Alberico, M. Álvarez, Eur. J. Org. Chem. (2012) 67. (b) W. Xie, G. Jiang, H. Liu, J. Hu, X. Pan,
H. Zhang, X. Wan, Y. Lai, D. Ma, Angew. Chem. Int Ed. 52 (2013) 12924. (c) N. Shibata, T. Tarui, Y. Doi, K.L. Kirk, Angew. Chem. Int. Ed. 40
(2001) 4461.
[5] (a) M. Tayu, Y. Hui, S. Takeda, K. Higuchi, N. Saito, T. Kawasaki, Org. Lett. 19 (2017) 6582. (b) S.P. Marsden, K.M. Depew, S.J. Danishefsky, J.
Am. Chem. Soc. 116 (1994) 11143.
[6] (a) L. Zhao, J.P. May, J. Huang, D.M. Perrin, Org. Lett. 14 (2012) 90. (b) T.M. Kamenecka, S.J. Daniskefsky, Angew. Chem. Int. Ed. 37 (1999)
2995. (c) Y. Li, L. Li, X. Lu, Y. Bai, Y. Wang, Y. Wu, F. Zhong, Chem. Commun. 55 (2019) 63. (d) E.C. Gentry, L.J. Rono, M.E. Hale, R.
Matsuura, R.R. Knowles, J. Am. Chem. Soc. 140 (2018) 3394. (e) Q. Li, T. Xia, L. Yao, H. Deng, X. Liao, Chem. Sci. 6 (2015) 3599. (f) Z. Shen,
Z. Xia, H. Zhao, J. Hu, X. Wan, Y. Lai, C. Zhu, W. Xie, Org. Biol. Chem. 13 (2015) 5381.
[7] (a) B.M. Trost, J. Quancard, J. Am. Chem. Soc. 128 (2006) 6314. (b) J.M. Müller, C.B.W. Stark, Angew. Chem. Int. Ed. 55 (2016) 4798. (c) H.
Hakamata, S. Sato, H. Ueda, H. Tokuyama, Org. Lett. 19 (2017) 5308. (d) S. Zhu, D.W.C. MacMillan, J. Am. Chem. Soc. 134 (2012) 10815. (e)
M.E. Kieffer, K.V. Chuang, S.E. Reisman, Chem. Sci. 3 (2012) 3170. (f) X. Chen, J. Fan, G. Zeng, J. Ma, C. Wang, Y. Wang, Y. Zhou, X. Deng,
J. Org. Chem. 83 (2018) 8322.
[8] (a) J.-Q. Zhang, F. Tong, B.-B. Sun, W.-T. Fan, J.-B. Chen, D. Hu, X.-W. Wang, J. Org. Chem. 83 (2018) 2882. (b) D.J. Rivinoja, Y.S. Gee, M.G.
Gardiner, J.H. Ryan, C.J.T. Hyland, J. Org. Chem. 82 (2017) 13517. (c) Z. Chai, Y.-M. Zhu, P.-J. Yang, S. Wang, S. Wang, Z. Liu, G. Yang, J.
Am. Chem. Soc. 137 (2015) 10088. (d) L. Wang, D. Yang, F. Han, D. Li, D. Zhao, R. Wang, Org. Lett. 17 (2015) 176.
[9] J.E. Spangler, H.M.L. Davies, J. Am. Chem. Soc. 135 (2013) 6802.
[10] (a) Q. Cai, C. Liu, X.-W. Liang, S.-L. You, Org. Lett. 14 (2012) 4588. (b) J.F. Austin, S.-G. Kim, C.J. Sinz, W.-J. Xiao, D.W.C. MacMillan, Proc.
Nat. Acad. Sci. 101 (2004) 5482.
[11] (a) K. Wu, Y. Du, T. Wang, Org. Lett. 19 (2017) 5669.
[12] F. Fan, W. Xie, D. Ma, Chem. Commun. 48 (2012) 7571.
[13] (a) X. Shen, J. Zhao, Y. Xi, W. Chen, Y. Zhao, X. Yang, H. Zhang, J. Org. Chem. 83 (2018) 14507. (b) A. Singh, G.P. Roth, Tetrahedron Lett. 53
(2012) 4889. (c) T. Bui, S. Syed, C.F. Barbas III, J. Am. Chem. Soc. 131 (2009) 8758.
[14] H. Cheng, R. Zhang, S. Yang, M. Wang, X. Zeng, L. Xie, C. Xie, J. Wu, G. Zhong, Adv. Synth. Catal. 358 (2016) 970.
[15] C.B. Huehls, J. Huang, J. Yang, Tetrahedron 71 (2015) 3593.
[16] P.C. Knipe, M. Gredičak, A. Cernijenko, R.S. Paton, M.D. Smith, Chem. Eur. J. 20 (2014) 3005.
[17] S. Lucarini, F. Bartoccini, F. Battistoni, G. Diamantini, G. Piersanti, M. Righi, G. Spadoni, Org. Lett. 12 (2010) 3844.
[18] L.M. Repka, J. Ni, S.E. Reisman, J. Am. Chem. Soc. 132 (2010) 14418.
[19] (a) J. Ni, H. Wang, S.E. Reisman, Tetrahedron 69 (2013) 5622. (b) H. Wang, S.E. Reisman, Angew. Chem. Int. Ed. 53 (2014) 6206.
[20] (a) M.M. Heravi, V. Zadsirjan, B. Farajpour, RSC Adv. 2016, 6, 30498–30551. (b) Heravi, M. M.; Zadsirjan, V. Tetrahedron Asymm. 2013, 24,
1149–1188.
[21] (a) Li, M.; Carreras, V.; Jalba, A.; Ollevier, T. Org. Lett. 20 (2018) 995. (b) A. Sakakura, R. Kondo, Y. Matsumura, M. Akakura, K. Ishihara, J.
Am. Chem. Soc. 131 (2009) 17762. (c) D.A. Evans, D.M. Barnes, J.S. Johnson, T. Lectka, P. von Matt, S.J. Miller, J.A. Murry, R.D. Norcross,
E.A. Shaughnessy, K.R. Campos, J. Am. Chem. Soc. 121 (1999) 7582.
[22] T. Hosokawa, T. Yamanaka, M. Itotani, S. Murahashi, S. J. Org. Chem. 60 (1995) 6159.
[23] J.F. Bower, A.J. Williams, H.L. Woodward, P. Szeto, R.M. Lawrence, T. Gallagher, Org. Biomol. Chem. 5 (2007) 2636.
[24] (a) F. Heaney, J. Fenlon, P. McArdle, D. Cunningham, Org. Biomol. Chem. 1 (2003) 1122. (b) M.J. Burk, G. Casy, N.B. Johnson, J. Org. Chem.
63 (1998) 6084.
[25] J.M. Stevens, A.C. Parra-Rivera, D.D. Dixon, G.L. Beutner, A.J. Del Monte, D.E. Frantz, J.M. Janey, J. Paulson, M.R. Talley, J. Org. Chem. 83
(2018) 14245.
Highlights
• Chiral acetamide oxazolidinones produced
• Reactions with indoles gave pyrroloindoline products
• This structure is found in many natural products
• Numerous indoles gave up to 91% yield with high selectivity