4916
J. Am. Chem. Soc. 1996, 118, 4916-4917
first time that suitably designed chiral Ru(II) complexes catalyze
efficiently the asymmetric reduction of imines with an inex-
pensive, well-behaving formic acid-triethylamine mixture under
mild conditions.
Asymmetric Transfer Hydrogenation of Imines
Nobuyuki Uematsu, Akio Fujii, Shohei Hashiguchi,
Takao Ikariya, and Ryoji Noyori*,†
In this investigation, we selected as the model reaction the
reduction of the imine 1a to salsolidine 2a in the presence of
Ru(II) catalysts 3.9-11,13 Screening experiments revealed that
asymmetric reduction of 1a was best effected with a 5:2 formic
acid-triethylamine azeotropic mixture14 in acetonitrile contain-
ing (S,S)-3a at 28 °C (S/C ) 200, HCO2H/1a ) 6, [1a] ) 0.5
M, 3 h), leading to (R)-2a in 95% ee and in >99% yield. The
reaction was conducted equally well in various aprotic polar
solvents including DMF, DMSO, and CH2Cl2, but not in ethereal
or alcoholic media; the reaction in a neat formic acid-
triethylamine mixture11 was very slow.
ERATO Molecular Catalysis Project
Research DeVelopment Corporation of Japan
1247 Yachigusa, Yakusa-cho, Toyota 470-03, Japan
ReceiVed February 5, 1996
The cardinal significance of chiral amines in pharmaceutical
and agrochemical substances demands the development of an
efficient catalytic asymmetric reduction of imines. Certain
imines were hydrogenated by chiral phosphine-Rh or -Ir
catalysts with a substrate/catalyst molar ratio (S/C) of 100-
1000 at 10-100 atm to give secondary amines in a fair to good
ee1 and by a chiral ansa-titanocene catalyst (S/C ) 20, 6-140
atm) with 95-100% enantioselection.2,3 Hydrosilylation with
chiral phosphine-Rh complexes (S/C ) 50-100)4 or hydrobo-
ration with chiral oxazaborolidines (S/C ) 10)5,6 also effect the
asymmetric reduction with 60-70% optical yield. These
procedures, though viable, can still be improved for practical
use in organic synthesis. Transfer hydrogenation using stable
organic hydrogen donors is an attractive alternative in view of
the less hazardous properties of the reducing agents and
operational simplicity, as well as possible high overall cost
performance. Although such reductions have emerged as a
convenient method for asymmetric saturation of CdC7 and
CdO linkages,8-12 its usage for enantioselective CdN reduction
has remained totally undeveloped. Here we disclose for the
† Permanent address: Department of Chemistry, Nagoya University,
Chikusa, Nagoya 464-01, Japan.
The rate and enantioselectivity of the reaction are delicately
influenced by the η6-arene and 1,2-diamine ligands in 3. The
high efficiency attained with (S,S)-3a relies on not only the
chirality of the N-tosylated 1,2-diamine but also the presence
of the polar functional groups as well as the alkyl substituents
on the p-cymene ligand. The NH2 (not N(CH3)2) and ArSO2
(not CF3SO2, C6H5CO, or CH3CO) groups play crucial roles
for the high reactivity, while the structure of the Ar group and
the substitution pattern of the η6-arene ligand may be fine-tuned
depending on the imine substrates. The same result was
obtained using the Ru complex 3 in situ formed from [RuCl2-
(η6-arene)]2 and the N-sulfonylated diamine in triethylamine
without isolating the pure compound. The reaction was
normally performed with an S/C ratio of 200, but the ratio could
be as high as 1000.
(1) (a) Rh, S/C )100, 73% ee: Bakos, J.; To´th, I.; Heil, B.; Marko´, L.
J. Organomet. Chem. 1985, 279, 23-29. (b) Rh, S/C ) 100, 71-91% ee:
Becalski, A. G.; Cullen, W. R.; Fryzuk, M. D.; James, B. R.; Kang, G.-J.;
Rettig, S. J. Inorg. Chem. 1991, 30, 5002-5008. (c) Rh, S/C ) 100, 89-
96% ee: Bakos, J.; Orosz, AÄ .; Heil, B.; Laghmari, M.; Lhoste, P.; Sinou,
D. J. Chem. Soc., Chem. Commun. 1991, 1684-1685. (d) Ir, S/C >1000,
40-80% ee: Chan, Y. Ng C.; Osborn, J. A. J. Am. Chem. Soc. 1990, 112,
9400-9401. (e) Ir, S/C ) 100, 79-93% ee: Morimoto, T.; Achiwa, K.
Tetrahedron: Asymmetry 1995, 6, 2661-2664. (f) Ir, S/C ) 100, 70-90%
ee: Tani, K.; Onouchi, J.; Yamagata, T.; Kataoka, Y. Chem. Lett. 1995,
955-956.
(2) (a) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1992,
114, 7562-7564. (b) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem.
Soc. 1994, 116, 8952-8965. (c) Willoughby, C. A.; Buchwald, S. L. J.
Am. Chem. Soc. 1994, 116, 11703-11714.
(3) For selected asymmetric hydrogenations of functionalized CdN
bonds, see: (a) Oppolzer, W.; Wills, M.; Starkemann, C.; Bernardinelli,
G. Tetrahedron Lett. 1990, 31, 4117-4120. (b) Burk, M. J.; Feaster, J. E.
J. Am. Chem. Soc. 1992, 114, 6266-6267. (c) Burk, M. J.; Martinez, J. P.;
Feaster, J. E.; Cosford, N. Tetrahedron 1994, 50, 4399-4428.
(4) (a) Kagan, H. B.; Langlois, N.; Dang, T. P. J. Organomet. Chem.
1975, 90, 353-365. (b) Brunner, H.; Becker, R; Gauder, S. Organometallics
1986, 5, 739-746.
Triethylamine is necessary; attempted reaction of 1a with
formic acid in acetonitrile containing 3a failed to produce 2a.
Ru(II) complexes are known to catalyze the reversible process,
HCO2H h H2 + CO2,15 and 3a indeed catalyzes the decom-
position of formic acid under the above described reaction
conditions. However, the asymmetric reduction of the imine
is a result of transfer hydrogenation by formic acid, and
molecular hydrogen does not intervene. The reaction of 1a in
acetonitrile under a D2 atmosphere (1a/(S,S)-3a ) 200, D2 60
atm, D2:HCO2H molar ratio ) 24:1) under otherwise identical
conditions gave (R)-2a in 93% ee and in >99% yield without
(5) (a) Cho, B. T.; Chun, Y. S. Tetrahedron: Asymmetry 1992, 3, 1583-
1590. (b) Bolm, C.; Felder, M. Synlett 1994, 655-656. (c) Sakai, T.; Yan,
F.; Uneyama, K. Synlett 1995, 753-754. (d) Shimizu, M.; Kamei, M.;
Fujisawa, T. Tetrahedron Lett. 1995, 36, 8607-8610.
(6) For highly enantioselective stoichiometric reductions, see: (a)
Yamada, K.; Takeda, M.; Iwakuma, T. J. Chem. Soc., Perkin Trans. 1 1983,
265-270. (b) Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.; Ito, K.;
Hirao, A.; Nakahama, S. J. Chem. Soc., Perkin Trans. 1 1985, 2039-2044.
(c) Hutchins, R. O.; Abdel-Magid, A.; Stercho, Y. P.; Wambsgans, A. J.
Org. Chem. 1987, 52, 702-704. (d) Sakito, Y.; Yoneyoshi, Y.; Suzukamo,
G. Tetrahedron Lett. 1988, 29, 223-224. (e) Itsuno, S.; Sakurai, Y.;
Shimizu, K.; Ito, K. J. Chem. Soc., Perkin Trans. 1 1990, 1859-1863.
(7) (a) Brunner, H.; Leitner, W. Angew. Chem., Int. Ed. Engl. 1988, 27,
1180-1181. (b) Saburi, M.; Ohnuki, M.; Ogasawara, M.; Takahashi, T.;
Uchida, Y. Tetrahedron Lett. 1992, 33, 5783-5786.
2
deuterium incorporation at C(1) (1H and H NMR analysis).
(12) (a) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. ReV. 1992,
92, 1051-1069. (b) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.;
Huskens, J. Synthesis 1994, 1007-1017. (c) Evans, D. A.; Nelson, S. G.;
Gagne´, M. R.; Muci, A. R. J. Am. Chem. Soc. 1993, 115, 9800-9801.
(13) Molecular structure of the 3a was determined by single-crystal X-ray
analysis (see supporting information). See also refs 9 and 11.
(14) (a) Wagner, K. Angew. Chem., Int. Ed. Engl. 1970, 9, 50-54. (b)
Narita, K.; Sekiya, M. Chem. Pharm. Bull. 1977, 25, 135-140.
(15) (a) Jessop, P. G.; Ikariya, T.; Noyori, R. Chem. ReV. 1995, 95, 259-
272. (b) Laine, R. M.; Rinker, R. G.; Ford, P. C. J. Am. Chem. Soc. 1977,
99, 252-253.
(8) Gao, J.-X.; Ikariya, T.; Noyori R. Organometallics 1996, 15, 1087-
1089.
(9) Hashiguchi, S.; Fujii, A.; Takehara, J.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1995, 117, 7562-7563.
(10) Takehara, J.; Hashiguchi, S.; Fujii, A.; Inoue, S.; Ikariya, T.; Noyori,
R. J. Chem. Soc., Chem. Commun. 1996, 233-234.
(11) Fujii, A.; Hashiguchi, S.; Uematsu, N.; Ikariya, T.; Noyori, R. J.
Am. Chem. Soc. 1996, 118, 2521-2522.
S0002-7863(96)00364-2 CCC: $12.00 © 1996 American Chemical Society