Model Complexes for Chlorite Dismutase
PR
PR
Cld
ClO-4 98 ClO3- 98 ClO-2 8 O2 + Cl-
(1)
This second enzyme, which is the focus of our study, is a
homotetrameric heme b enzyme with a molecular weight of
113 kD. It has been assumed that the iron porphyrin (a
common motif for biocatalyzed oxidation chemistry) is
directly responsible for the dismutation chemistry.13 While
some activity measurements have been done on native and
recombinant forms of Cld,12 very little is known about the
Figure 1. Water soluble iron porphyrins. TF4TMAP ) 5,10,15,20-
tetrakis(2,3,5,6-tetrafluoro-4-N,N,N-trimethylanilinium)porhyrin; TMAP )
5,10,15,20-tetrakis(4-N,N,N-trimethylanilinium)porhyrin. TPPS ) 5,10,15,20-
tetrakis(4-sulfonatophenyl)porhyrin.
molecular mechanism.12e
,f
molecular O2 in the transfer of O-atoms to substrate. This
can be viewed as the reverse of the Cld reaction, which
involves dioxygen evolution from the substrate, ClO2 .
Chlorite and chlorous acid (abbreviated Cl(III)) have been
the focus of much research. Several research groups have
addressed the mechanistic details of the metal-free decom-
position of Cl(III).9 The reaction chemistry of Cl(III) with
transition-metal ions has been reviewed by Fa´bia´n,14 and
much of the work has focused on aqueous nonheme Fe
species as redox agents7 and catalysts for decomposition.8
While a number of metal species are known to catalyze the
formation of oxygen from hypochlorite (OCl-),10a-d syn-
thetic systems that evolve O2 from ClO2- are rare. Collman
and co-workers have recently reported on a manganese-
porphyrin catalyst for alkane oxidation by ClO2- that evolves
O2 as a minor side reaction.15 To our knowledge this is the
only example of metal-catalyzed oxygen-evolving chlorite
decomposition.
Iron porphyrins are ubiquitous in biology as redox agents.
Cytochrome c employs an iron-porphyrin as the electron
carrier in the electron transport chain, peroxidases facilitate
the conversion of dangerous peroxides, and cytochrome P450
catalyzes oxygen atom transfer reactions for drug metabolism
and biological detoxification.16 The latter is of particular
interest to our current discussion of Cld in that it activates
-
The traditional mechanism for cytochrome P450 implicates
an oxoferryl porphryin radical cation species
(O)FeIV(Por) ·+, Compound I) as the oxygen transfer re-
agent.17 However, recent results have implicated the involve-
ment of more than one oxidizing species in cytochrome
P450.18,19 It remains to be seen what species are relevant to
the mechanism of chlorite dismutase.
We have recently communicated the concerted dismutation
of chlorite by an FeIII(TF4TMAP) complex (TF4TMAP )
tetrakis(2,3,5,6-tetrafluro-N,N,N-trimethylanilinium)porphy-
rin).20 In this work, we examine the full scope of this and
several water-soluble iron porphyrins as biomimetic catalysts
for Cld. Reaction kinetics, product distribution, 18O-labeling
studies, and competition with a sacrificial reductant (ABTS)
are employed in determining operative mechanisms for the
models and hence the enzyme.
Results
Evolution of O2. We studied three water-soluble iron
porphyrins (Fe(Por)) at neutral pH as model catalysts for
Cld. These are shown in Figure 1. All three catalyze the
(9) For examples of metal-free decomposition of chlorite, see (a) Leitner,
N. K.V.; Delaat, J.; Dore, M. Water Res. 1992, 26, 1655. (b) Deshwal,
B. R.; Jo, H. D.; Lee, H. K. Can. J. Chem. Eng. 2004, 82, 619. (c)
Cosson, H.; Ernst, W. R. Ind. Eng. Chem. Res. 1994, 33, 1468. (d)
Jia, Z.; Margerum, D. W.; Francisco, J. S. Inorg. Chem. 2000, 39,
2614. (e) Furman, C. S.; Margerum, D. W. Inorg. Chem. 1998, 37,
4321.
(10) For examples of hypochlorite decomposition studies, see (a) Lister,
M. W. Can. J. Chem. 1956, 34, 479. (b) Church, J. A. Ind. Eng. Chem.
Res. 1994, 33, 239. (c) Ayres, G. H.; Booth, M. H. J. Am. Chem. Soc.
1955, 77, 825. (d) Ayres, G. H.; Booth, M. H. J. Am. Chem. Soc.
1955, 77, 828. (e) Adam, L. C.; Gordon, G. Inorg. Chem. 1999, 38,
1299. (f) Lister, M. W Can. J. Chem. 1956, 34, 479.
(11) Kengen, S. W. M; Rikken, G. B.; Hagen, W. R.; van Ginkel, C. G.;
Stams, A. J. M. J. Bacteriol. 1999, 181, 6706. (b) Okeke, B. C.;
Frankenberger, W. T. Microbiol. Res. 2003, 158, 337. (c) Bender,
K. S.; Shang, C.; Cakraborty, R.; Belckik, S. M.; Coates, J. D.;
Achenback, L. A. J. Bacteriol. 2005, 187, 5090.
(12) (a) Van Ginkel, C. G.; Rikken, G. B.; Kroon, A. G. M.; Kengen,
S. W. M. Arch. Microbiol. 1996, 166, 321. (b) Stenklo, K.; Thorell,
H. D.; Bergius, H.; Aasa, R.; Nilsson, T. J. Biol. Inorg. Chem. 2001,
6, 601. (c) Xu, J.; Logan, B. E. J. Microbiol. Meth. 2004, 271, 3539.
(d) Bender, K. S.; O’Connor, S. A.; Cakraborty, R.; Coates, J. D.;
Achenbach, L. A. Appl. EnViron. Microb. 2002, 68, 4820. (e) Streit,
B. R.; DuBois, J. L. Biochemistry 2008, 47, 5271. (f) Lee, A. Q.;
Streit, B. R.; Zdilla, M. J.; Abu-Omar, M. M.; DuBois, J. L. Proc.
Natl. Acad. Sci. U.S.A. 2008, 105, 15654–15659.
-
degradation of ClO2 with formation of O2 at varying
efficiencies. Dioxygen evolution was monitored using an in-
house built residual gas analyzer (RGA) consisting of a
sample cell, the headspace of which is swept with an inert
gas (usually nitrogen) which is carried to a single quadrupole
(17) (a) McLain, J. L.; Lee, J.; Groves, J. T. In Biomimetic Oxidations
Catalyzed by Transition Metal Complexes; Meunier, B., Ed.; Imperial
College Press: London, 2000, pp 91-169. (b) Meunier, B.; Bernadou,
J. Top. Catal. 2002, 21, 47. (c) Watanabe, Y. In The Porphyrin
Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic
Press: New York, 2000, Vol. 4, pp 97-117.
(18) (a) Song, W. J.; Ryu, Y. O.; Song, R.; Nam, W. J. Biol. Inorg. Chem.
2005, 10, 294. (b) Koppenol, W. H. J. Am. Chem. Soc. 2007, 129,
9686. (c) Machii, K.; Watanabe, Y.; Morishima, I. J. Am. Chem. Soc.
1995, 117, 6691. (d) Vaz, A. D. N.; McGinnity, D. F.; Coon, M. J.
Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 3555. (e) Toy, P. H.;
Dhanabalasingam, B.; Newcomb, M.; Hanna, I. H.; Hollenberg, P. F.
J. Org. Chem. 1997, 62, 9114. (f) Nam, W.; Lim, M. H.; Moon, S. K.;
Kim, C. J. Am. Chem. Soc. 2000, 122, 10805. (g) Collman, J. P.; Zeng,
L.; Decre´au, R. A. Chem. Commun. 2003, 2974. (h) Wang, S. H.;
Mandimutsira, B. S.; Todd, R.; Ramdhanie, B.; Fox, J. P.; Goldberg,
D. P. J. Am. Chem. Soc. 2004, 126, 18.
(19) (a) Nam, W.; Choi, S. K.; Lim, M. H.; Rohde, J.-U.; Kim, I.; Kim, J.;
Kim, C.; Que, L., Jr Angew. Chem., Int. Ed. 2003, 42, 109. (b)
Collman, J. P.; Chien, A. S.; Eberspacher, T. A.; Brauman, J. I. J. Am.
Chem. Soc. 2000, 122, 11098. (c) Nam, W.; Lim, M. H.; Lee, H. J.;
Kim, C. J. Am. Chem. Soc. 2000, 122, 6641.
(20) Zdilla, M. J.; Lee, A. Q.; Abu-Omar, M. M. Angew. Chem., Int. Ed.
2008, 47, 7697–7700.
(13) Hagedoorn, P. L.; Geus, D. C.; Hagen, W. R. Eur. J. Biochem. 2002,
269, 4905.
(14) Fa´bia´n, I. Coord. Chem. ReV. 2001, 216-217, 449.
(15) Slaughter, L. M.; Collman, J. P.; Eberspacher, T. A.; Brauman, J. I.
Inorg. Chem. 2004, 43, 5198.
(16) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. ReV. 2004, 104, 3947.
Inorganic Chemistry, Vol. 48, No. 5, 2009 2261