5846
M. Bandini et al. / Tetrahedron Letters 44 (2003) 5843–5846
the colour of the solution turned red–orange. After 48
h stirring, the reaction was quenched with a saturated
solution of NaHCO3 (5 mL), the two layers were
separated and the aqueous phase was extracted with
Et2O (3×5 mL). Finally, the collected organic phases
were dried over Na2SO4 and concentrated under
reduced pressure to give a pale orange oil, which was
then purified by flash chromatography (silica gel, cyclo-
hexane/Et2O 85/15, Rf=0.3). The (R)-4ga was isolated
as a pale yellow viscous oil (92 mg, 98% yield) in 80%
ee. Chiral analysis was carried out by HPLC (Chiralcel
OD iPrOH/hexane (20:80), flow rate 0.7 mL min−1, 225
nm; tr-(S)=11.44 min, tr-(R)=15.11 min); [h]D=−54 (c
0.98 in CHCl3). Analytical data for 4ga: IR (Nujol)
w=3398, 3055, 2963, 1695, 1587, 1456, 1091 cm−1; MS
(70 eV): m/z (%): 311 (20) [M+], 281 (18), 253 (10), 207
(82), 191 (15), 158 (100), 139 (22), 130 (18), 111 (12), 75
Jørgensen, K. A. J. Org. Chem. 2002, 67, 4352–4361; (g)
Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030–
9031.
4. Corma, A.; Garc´ıa, H.; Moussaif, A.; Sabater, M. J.;
Zniber, R.; Redouane, A. Chem. Commun. 2002, 1058–
1059.
5. (a) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc.
2001, 123, 4370–4371; (b) Austin, J. F.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2002, 124, 1172–1173; (c) Paras,
N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002,
124, 7894–7895.
6. (a) Bandini, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre,
P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. 2002, 67,
3700–3704; (b) Bandini, M.; Fagioli, M.; Melloni, A.;
Umani-Ronchi, A. Synthesis 2003, 397–402.
7. Chiral aluminium Schiff base complexes have been shown
to be effective catalysts in several asymmetric processes:
(a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc.
1998, 120, 5315–5316; (b) Myers, J. K.; Jacobsen, E. N.
J. Am. Chem. Soc. 1999, 121, 8959–8960; (c) Evans, D.
A.; Janey, J. M.; Magomedov, N.; Tedrow, J. S. Angew.
Chem., Int. Ed. 2001, 40, 1884–1888; (d) Sammis, G. M.;
Jacobsen, E. N. J. Am. Chem. Soc. 2003, 125, 4442–4443.
8. The use of cyclic enones such as 2-cyclopenten-1-one and
2-cyclohexen-1-one furnished the desired indolyl deriva-
tives only in traces.
1
(9); H NMR (200 MHz, CDCl3, 25°C, TMS): l=8.4
(br, 1H), 7.77–7.81 (m, 2H), 7.65–7.69 (m, 1H), 7.23–
7.36 (m, 4H), 7.06–7.14 (m, 2H), 3.73 (q, J=7.0 Hz,
1H), 3.43–3.55 (m, 1H), 3.30 (dd, J=7.0 Hz, J=16.2
Hz, 1H), 2.38 (s, 3H), 1.50 (d, J=7.0 Hz, 1H); 13C
NMR (75 MHz, CDCl3, 25°C, TMS): l=198.86,
160.19, 139.10, 135.47, 130.36, 129.37, 128.63, 120.63,
118.91, 118.87, 115.10, 110.53, 45.50, 27.43, 21.02,
11.88.
9. The role of pyridine as an additive in metallo-salen
catalysed asymmetric cyclopropanation of olefins was
recently discussed: Miller, J. A.; Jin, W.; Nguyen, S. T.
Angew. Chem., Int. Ed. 2002, 41, 2953–2956.
Acknowledgements
10. The use of a stoichiometric amount of amine was taken
into account as well. However, in this case, the 1-4
adduct was isolated after 48 h in low yield (i.e. Et3N 100
mol%, 18% yield, 66% ee).
We thank F.I.R.B., M.I.U.R. (Rome) ‘Progetto
Stereoselezione in Chimica Organica. Metodologie ed
Applicazioni’ and University of Bologna (funds for
selected research topics) for the financial support of this
research.
11. It is also notable that by using an excess of enone 2c (1.5
equiv.) with respect to the indole 3a (1 equiv.), 4ca was
obtained with a comparable enantiomeric excess (77%)
but with a significantly higher yield (87%).
12. Comparison of diagnostic 1H NMR signals of commer-
cial 1 and 1·Et3N in brackets (CD2Cl2, rt, 300 MHz):
8.34[7.80] (2H, CHꢁN), 7.58[7.41] (2H, Ar), 7.18[7.03]
(2H, Ar).
References
1. Bigi, F.; Casiraghi, G.; Casnati, G.; Sartori, G.; Gasparri
Fava, G.; Ferrari Belicchi, M. J. Org. Chem. 1985, 50,
5018–5022.
2. (a) Wang, Y.; Ding, K.; Dai, L. Chemtracts-Org. Chem.
2001, 14, 610–615; (b) Bolm, C.; Hildebrand, J. P.;
Mun˜iz, K.; Hermanns, N. Angew. Chem., Int. Ed. 2001,
40, 3284–3308 and references cited therein.
3. (a) Gathergood, N.; Zhuang, W.; Jørgensen, K. A. J.
Am. Chem. Soc. 2000, 122, 12517–12522; (b) Ishii, A.;
Soloshonok, V. A.; Mikami, K. J. Org. Chem. 2000, 65,
1597–1599; (c) Zhuang, W.; Hansen, T.; Jørgensen, K. A.
Chem. Commun. 2001, 347–348; (d) Zhuang, W.; Gather-
good, N.; Hazell, R. G.; Jørgensen, K. A. J. Org. Chem.
2001, 66, 1009–1013; (e) Jensen, K. B.; Thorhauge, J.;
Hazell, R. G.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2001, 40, 160–163; (f) Saaby, S.; Bayo´n, P.; Aburel, P. S.;
13. (a) Oare, D. A.; Henderson, M. A.; Sanner, M. A.;
Heathcock, C. H. J. Org. Chem. 1990, 55, 132–157; (b)
Arisawa, M.; Torisawa, Y.; Kawahara, M.; Yamanaka,
M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 1997, 62,
4327–4329; (c) Toy, P. H.; Dhanabalasingam, B.; New-
combb, M.; Hanna, I. H.; Hollenberg, P. F. J. Org.
Chem. 1997, 62, 9114–9122.
14. Tetradentate ‘N2O2’ Schiff base aluminium enolates were
already utilised as initiators for the methacrylate poly-
merisation: Cameron, P. A.; Gibson, V. C.; Irvine, D. J.
Angew. Chem., Int. Ed. 2000, 39, 2141–2144 and refer-
ences cited therein.
15. Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc.
2002, 124, 1172–1173.