1
6440 J. Phys. Chem., Vol. 100, No. 40, 1996
Chyall and Squires
-1
K reaction enthalpy for reaction 14 of 9.2 ( 1.4 kcal mol .
(c) Bevilacqua, T. J.; Hanson, D. R.; Howard, C. J. J. Phys. Chem. 1993,
97, 3750. (d) Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. J.
Phys. Chem. 1994, 98, 4594.
Adding this value to PA(CO) ) 141.9 ( 1.0 kcal mol-1 gives
the proton affinity of CF3OH at oxygen of 151.1 ( 1.7 kcal
(
4) (a) Barone, S. B.; Turnipseed, A. A.; Ravishankara, A. R. J. Phys.
-1
mol (Table 3). The enthalpy change for loss of H2O from
Chem. 1994, 98, 4602. (b) Jensen, N. R.; Hanson, D. R.; Howard, C. J. J.
Phys. Chem. 1994, 98, 8574. (c) Chen, J.; Zhu, T.; Niki, H.; Mains, G. J.
Geophys. Res. Lett. 1992, 19, 2215.
CF3OH2+ (reaction 6) can then be combined with this value
and the supporting thermochemical data (Table 3) to derive
(
5) Wallington, T. J.; Hurley, M. D.; Schneider, W. F.; Sehested, J.;
Nielsen, O. J. J. Phys. Chem. 1993, 97, 7606.
6) Berkowitz, J.; Ellison, G. B.; Gutman, D. J. Phys. Chem. 1994,
98, 2744.
-
1
∆
Hf,298(CF3OH) ) -220.7 ( 3.2 kcal mol (eq 15), where
(
+
∆
Hf,298(CF OH) ) ∆H (CF ) + ∆H (H O) +
3
f,298
3
f,298
2
(
(
(
7) Schneider, W. F.; Wallington, T. J. J. Phys. Chem. 1993, 97, 12783.
8) Schneider, W. F.; Wallington, T. J. J. Phys. Chem. 1994, 98, 7448.
9) Benson, S. W. J. Phys. Chem. 1994, 98, 2216.
+
PA(CF OH) - ∆H (H ) - ∆H(6) (15)
3
f,298
(
10) Huey, L. G.; Dunlea, E. J.; Howard, C. J. J. Phys. Chem. 1996,
100, 6504.
(11) Montgomery, J. A., Jr.; Michels, H. H.; Francisco, J. S. Chem. Phys.
Lett. 1994, 220, 391.
12) Schneider, W. F.; Wallington, T. J.; Hurley, M. D.; Sehested, J.;
Nielsen, O. J. J. Phys. Chem. 1994, 98, 2217.
13) Chase, M. W., Jr.; Davies, C. A.; Downey, J. R.; Frurip, D. J.;
the assigned uncertainty represents the root-square-sum analysis
of the component uncertainties. Figure 7 presents a schematic
summary of the relative enthalpies of the pertinent ionic and
neutral species.
(
Our experimental value for ∆Hf,298(CF3OH) is slightly lower
than, but in satisfactory agreement with, the values predicted
by ab initio MO calculations. Montgomery et al.11 used an
isodesmic reaction approach at the G2 level of theory to compute
(
McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data, Suppl. 1, 1985,
14.
(14) Marinelli, P. J.; Paulino, J. A.; Sunderlin, L. S.; Wenthold, P. G.;
Poutsma, J. C.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes 1994,
-1
∆
Hf,298(CF3OH) ) -217.7 ( 2 kcal mol , where the estimated
1
1
30, 89.
uncertainty represents the average error in the computed heats
(15) Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1985, 83, 166.
(16) Sunderlin, L. S.; Wang, D.; Squires, R. R. J. Am. Chem. Soc. 1993,
15, 12060.
7
of formation of a test set of molecules. Related calculations
at a slightly lower level of theory also provide ∆Hf,298(CF3OH)
-
1
(17) Armentrout, P. B. In AdVances in Gas Phase Ion Chemistry; Adams,
N. G., Babcock, L. M., Eds.; JAI: Greenwich, CT, 1992; Vol. 1.
)
-217.7 kcal mol . Bond additivity estimates suggest a
9,31
somewhat higher value.
(
18) Armentrout, P. B.; Hales, D. A.; Lian, L. In AdVances in Metal
and Semiconductor Clusters; Duncan, M. A., Eds.; JAI: Greenwich, CT,
Summary
1994; Vol. 2.
(19) Chesnavich, W. J.; Bowers, M. T. J. Phys. Chem. 1979, 83, 900.
Oxygen-protonated trifluoromethanol can be prepared by the
reaction of CF3I with water. The CF3OH2 ions are kinetically
stable but are easily isomerized to (HF)CF2OH cluster ions in
the presence of base catalysts such as SO2 and COS. The
(20) Data analysis was carried out using the CRUNCH program
•
+
+
developed by P. B. Armentrout and co-workers.
(21) Chantry, P. J. J. Chem. Phys. 1971, 55, 2746.
+
(22) (a) Schultz, R. H.; Crellin, K. C.; Armentrout, P. B. J. Am. Chem.
Soc. 1991, 113, 8590. (b) Khan, F. A.; Clemmer, D. E.; Schultz, R. H.;
Armentrout, P. B. J. Phys. Chem. 1993, 97, 7978.
(23) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data, Suppl. 1 1988, 17. Some
data were taken from the NIST Positive Ion Energetics Database, Version
+
(HF)CF2OH cluster ion is characterized by a relatively weak
-
1
HF binding energy of 14.4 ( 1.7 kcal mol . The threshold
for water loss from CF3OH2 has been determined to be 36.6
+
-
1
(
2.1 kcal mol . The endothermicity for proton transfer from
CF3OH2 to CO was determined to be 9.2 ( 1.4 kcal mol ,
2
.0, NIST Standard Reference Database 19A, July 1993.
24) Gaussian 92, Revision D.2: Frisch, M. J.; Trucks, G. W.; Head-
+
-1
(
which leads to an oxygen proton affinity for CF3OH of 151.1
Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B.
G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres,
J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox,
D. J. Defrees, D. J.; Baker, J.; Stewart, J. J. P; Pople, J. A. Gaussian, Inc.,
Pittsburgh, PA, 1992.
(25) Grandinetti, F.; Occhiucci, G.; Crestoni, M. E.; Fornarini, S.;
Speranza, M. Int. J. Mass Spectrom. Ion Processes 1993, 127, 123. For an
earlier theoretical study at the HF/4-31G level of theory, see: Grein, F.
Can. J. Chem. 1985, 63, 1988.
-
1
(
1.7 kcal mol . When these measurements are combined
Via the thermochemical cycle given in reactions 5-7, a value
-
1
of -220.7 ( 3.2 kcal mol is obtained for ∆Hf,298(CF3OH).
Our measured value for ∆Hf,298(CF3OH) can be used to
calculate that complete hydrolysis of CF3OH to CO2 and HF is
exothermic by 10.9 kcal mol . These thermochemical data
provide additional support for the suggestion that CF3OH
molecules formed by tropospheric oxidation of hydrofluoro-
-
1
(26) Morris, R. A.; Viggiano, A. A.; Van Doren, J. M.; Paulson, J. F.
J. Phys. Chem. 1992, 96, 3051.
(27) Bohme, D. K. Int. J. Mass Spectrom. Ion Processes 1992, 115, 95.
carbons are readily degraded by reactions with water droplets
and other heterogeneous processes.37
(28) The energy-resolved cross section obtained with argon target is
similar in appearance but displays somewhat more tailing in the threshold
region, which makes analysis more difficult. For this reason, the CID
threshold was determined from the neon experiments.
Acknowledgment. We thank Drs. Greg Huey and Carleton
Howard for helpful discussions. This work was funded by the
National Science Foundation and the Department of Energy,
Office of Basic Energy Science.
(29) (a) Nguyen, M. T.; Bouchoux, G. J. Phys. Chem. 1996, 100, 2089.
b) McEwan, M. J.; Fairley, D. A.; Scott, G. B. I.; Anicich, V. G. J. Phys.
(
Chem. 1996, 100, 4032. (c) Hiraoka, K.; Nasu, M.; Fugimaki, S.; Ignacio,
E. W.; Yamabe, S. J. Phys. Chem. 1996, 100, 5245.
(
30) Fisher, E. R.; Armentrout, P. B. Int. J. Mass Spectrom. Ion
Supporting Information Available: Optimized geometries
Processes 1990, 101, R1.
(31) Batt, L.; Walsh, R. Int. J. Chem. Kinet. 1982, 14, 933.
for CF3OH2+ (1), HF -CF2OH (2), and CF2O-H -FH (3),
+
+
(
17.
32) Koppel, I. A.; Anvia, F.; Taft, R. W. J. Phys. Org. Chem. 1994, 7,
provided in GAUSSIAN 92 Z-matrix format, and the computed
harmonic vibrational frequencies for these ions (2 pages).
Ordering information is given on any current masthead page.
7
(
33) Preliminary measurements in our laboratory give a value for ∆Hf,298-
2
(CF O) that is in agreement with the theoretical values given in Table 3.
Chyall, L. J.; Squires, R. R. Unpublished results.
(
34) Munson, M. J. B. J. Am. Chem. Soc. 1965, 87, 2332.
References and Notes
(35) Chyall, L. J.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes
(
1) Ravishankara, A. R.; Turnipseed, A. A.; Jensen, N. R.; Barone, S.;
Mills, M.; Howard, C. J.; Solomon, S. Science 1994, 263, 71.
2) Wallington, T. J.; Schneider, W. F.; Worsnop, D. R.; Nielsen, O.
J.; Sehested, J.; Debruyn, W. J.; Shorter, J. A. EnViron. Sci. Technol. 1994,
8, 320A.
3) (a) Ryan, K. R.; Plumb, I. C. J. Phys. Chem. 1982, 86, 4678. (b)
Caralp, F.; Lesclaux, R.; Dognon, A. M. Chem. Phys. Lett. 1986, 129, 433.
1995, 149/150, 257.
(36) Szulejko, J. E.; McMahon, T. B. J. Am. Chem. Soc. 1993, 115,
7839.
(
(37) Lovejoy, E. R.; Huey, L. G.; Hanson, D. R. J. Geophys. Res. 1995,
2
1
00, 18775.
(
JP961135N