4642
J. Chem. Phys., Vol. 116, No. 11, 15 March 2002
J.-J. Max and C. Chapados
1
1
7
8
tration variation of 1.7% compared to no disproportionation.
The approximation obtained with ␣ϭϭ␥ϭ1 gives a de-
J.-J. Max and C. Chapados, J. Chem. Phys. 113, 6803 ͑2000͒.
C. M e´ nichelli, J.-J. Max, and C. Chapados, Can. J. Chem. 78, 1128
2000͒.
J.-J. Max, S. de Blois, A. Veilleux, and C. Chapados, Can. J. Chem. 79, 13
͑2001͒.
Z. Zhao and E. R. Malinowski, Anal. Chem. 71, 602 ͑1999͒.
J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 ͑2001͒.
A. D. Buckingham, J. Mol. Struct. 250, 111 ͑1991͒.
D. M. Wieliczka, S. Weng, and M. R. Querry, Appl. Opt. 28, 1714 ͑1989͒.
G. Zuber, S. J. Prestrelski, and K. Benedek, Anal. Biochem. 207, 150
͑
viation for the MFs of 0.25ϫ0.017ϭ0.004 for H O and
2
19
D O, and 0.5ϫ0.017ϭ0.008 for HDO. These deviations are
2
2
2
2
0
1
2
within our experimental errors. A temperature stability better
than 0.05 K would be needed to observe the disproportion-
ation effect in H O–D O mixtures.
2
2
23
2
2
2
4
5
6
APPENDIX B: ‘‘FREE’’ OH IN AQUEOUS SOLUTIONS
͑
1992͒.
D. H. Powell, G. W. Neilson, and J. E. Enderby, J. Phys.: Condens. Matter
, 5723 ͑1993͒.
O. Kristiansson, J. Lindgren, and J. de Villepin, J. Phys. Chem. 92, 2680
1988͒.
From a near-IR study of methanol–water mixtures, it has
been reported that around 13% of liquid water OH are non-
5
4
8
hydrogen bonded and constitute ‘‘free’’ OH. This amount
represents a high quantity of defects in the liquid water net-
work. Roughly ͑13 M/50 Mϭ͒ 26% of the water molecules
would have only three hydrogen bonds. Using the integrated
intensity of the O–H stretching vibrations in the gas phase
which is about 7% of that in the liquid,49 the determination
of the structure of acetonitrile–water mixtures was made.50
Recent work in our laboratory on the same mixtures showed
that the molar O–H stretching integrated intensity remained
approximately constant throughout the solubility range ͑un-
published͒. This indicates that very little free OH groups are
in the aqueous solutions. Although this important issue can-
not be settled here, a rough estimate would indicate that less
than 1% of the water molecules have less than four hydrogen
bonds. Work is in progress on this system and others to an-
swer this fundamental question of the quantity of free OH in
aqueous solutions.
͑
2
2
2
3
7
8
9
0
L. Friedman and V. J. Shiner, Jr., J. Chem. Phys. 44, 4639 ͑1966͒.
J. R. Hultson, J. Chem. Phys. 50, 1483 ͑1969͒.
M. Wolfsberg, J. Chem. Phys. 50, 1484 ͑1969͒.
G. Jancso and W. A. van Hook, Chem. Rev. 74, 689 ͑1982͒.
31
͑
a͒ W. E. Thiessen and A. H. Narten, J. Chem. Phys. 77, 2656 ͑1982͒; ͑b͒
A. H. Narten, W. E. Thiessen, and L. Blum, Science 217, 1033 ͑1982͒.
G. E. Walrafen, J. Chem. Phys. 48, 244 ͑1968͒.
J. E. Bertie and Z. Lan, Appl. Spectrosc. 50, 1047 ͑1996͒.
E. R. Malinowski and D. G. Howery, Factor Analysis in Chemistry
32
3
3
3
4
͑
Krieger, Malabar, 1989͒.
3
3
3
3
5
6
7
8
C. Chapados and M. Trudel, Biophys. Chem. 47, 267 ͑1993͒.
J.-J. Max and C. Chapados, J. Phys. Chem. A 105, 10681 ͑2001͒.
M. Kakiuchi, Geochim. Cosmochim. Acta 64, 1485 ͑2000͒.
Total concentration of water in the samples is given by c ϭ55.13
w
Ϫ0.00682ϫc ͑initial D O͒.
2
39
Because species H Ob and HDOb are present simultaneously, they were
2
identified as H O•HDO when first observed as a spectroscopic species.
2
However, as shown in Sec. III E 2, species H2Ob and HDOb are always
present in the same proportion, but they are not necessarily hydrogen
bonded together ͑see case F5 in Fig. 5͒. This indicates that the two species
do not form a pair ͑or a hydrate͒, and justifies the label HDOЈ rather than
1
J.-J. Max, S. Daneault, and C. Chapados, Can. J. Chem. 80, 113 ͑2002͒.
Y. Mar e´ chal, J. Chem. Phys. 95, 5565 ͑1991͒.
R. M. Chapman and J. H. Shaw, Phys. Rev. 78, 71 ͑1950͒.
T. T. Wall and D. F. Hornig, J. Chem. Phys. 43, 2079 ͑1965͒.
2
H O•HDO.
2
3
40
At Dϭ0.497, the mixture contains the maximum amount of HDO which
gives the most intense spectrum of this species.
T. Iwata, J. Koshoubu, C. Jin, and Y. Okubo, Appl. Spectrosc. 51, 1269
͑1997͒.
4
5
41
42
D. J. Kushner, A. Baker, and T. G. Dunstall, Can. J. Physiol. Pharmacol.
7
7, 79 ͑1999͒.
6
C. Chapados, S. Lemieux, and R. Carpentier, Biophys. Chem. 39, 225
1991͒.
J.-J. Max, M. Trudel, and C. Chapados, Appl. Spectrosc. 52, 226 ͑1998͒.
B. M. Andreev, Chemical isotope exchange-A modern way of producing
heavy water, Russ. Chem. Indus. 31, 4 ͑1999͒.
E. Grunwald and C. Steel, Can. J. Chem. 77, 1097 ͑1999͒.
J. Bandekar and B. Curnutte, J. Mol. Spectrosc. 58, 169 ͑1975͒.
F. N. Keutsch, R. S. Fellers, M. G. Brown, M. R. Viant, P. B. Petersen, and
R. J. Saykally, J. Am. Chem. Soc. 123, 5938 ͑2001͒.
G. Zundel, in Transport Through Membranes: Carriers, Channels, and
Pumps, edited by A. Pullman et al. ͑Kluwer Academic, Dordrecht, 1988͒,
p. 409.
P. L. Geissler, C. Dellago, D. Chandler, J. Hutter, and M. Parrinello, Sci-
ence 291, 2121 ͑2001͒.
H. R. Zelsmann, J. Mol. Struct. 350, 95 ͑1995͒.
W. A. P. Luck, H. Borgholte, and T. Habermehl, J. Mol. Struct. 177, 523
͑1988͒.
4
3
͑
7
8
44
4
5
9
0
I. S. Kislina, V. D. Maiorov, N. B. Librovich, and M. I. Vinnik, Russ. J.
Phys. Chem. 50, 1676 ͑1976͒.
1
46
J.-J. Max and C. Chapados, Appl. Spectrosc. 53, 1045 ͑1999͒.
J.-J. Max, M. Trudel, and C. Chapados, Appl. Spectrosc. 52, 234 ͑1998͒.
J.-J. Max and C. Chapados, Appl. Spectrosc. 53, 1601 ͑1999͒.
J.-J. Max and C. Chapados, Appl. Spectrosc. 52, 963 ͑1998͒.
J.-J. Max and C. Chapados, Can. J. Chem. 78, 64 ͑2000͒.
J. Baril, J.-J. Max, and C. Chapados, Can. J. Chem. 78, 490 ͑2000͒.
J.-J. Max, C. M e´ nichelli, and C. Chapados, J. Phys. Chem. A 104, 2845
11
1
1
1
1
1
2
3
4
5
6
47
48
49
J. E. Bertie, A. M. Khalique, and H. H. Eysel, J. Phys. Chem. 93, 2210
͑1989͒.
J. E. Bertie and Z. Lan, J. Phys. Chem. B 101, 4111 ͑1997͒.
5
0
͑2000͒.
Downloaded 17 Jun 2013 to 137.99.31.134. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions