Hydrogen Bond Exchange in Aqueous Ionic Solutions
J. Phys. Chem. B, Vol. 113, No. 22, 2009 7835
(25) Moilanen, D. E.; Piletic, I. R.; Fayer, M. D. J. Phys. Chem. C 2007,
111, 8884–8891.
(26) Woutersen, S.; Bakker, H. J. Nature 1999, 402, 507–509.
(27) Gaffney, K. J.; Piletic, I. R.; Fayer, M. D. J. Chem. Phys. 2003,
118, 2270–2278.
(28) Car, R.; Parrinello, M. Phys. ReV. Lett. 1985, 55, 2471.
(29) Heinje, G.; Luck, W. A. P.; Heinzinger, K. J. Phys. Chem. A. 1987,
91, 331–338.
(30) Krienke, H.; Opalka, D. J. Phys. Chem. C 2007, 111, 15935–15941.
(31) Becke, A. D. Phys. ReV. A 1988, 38, 3098–3100.
(32) Lee, C.; Yang, W.; Parr, R. G. Phys. ReV. B. 1988, 37, 785–789.
(33) Toukan, K.; Rahman, A. Phys. ReV. B. 1985, 31, 2643–2648.
(34) Troullier, N.; Martins, J. L. Phys. ReV. B. 1991, 43, 1993–2006.
(35) Kleinman, L.; Bylander, D. M. Phys. ReV. Lett. 1982, 48, 1425.
(36) Goedecker, S.; Teter, M.; Hutter, J. Phys. ReV. B. 1996, 54, 1703–
1710.
structure and dynamics of aqueous 6 M NaClO4. H-bond
exchange occurs predominantly through orientational motions
within structurally distinct solvation subshells around the
perchlorate anion. The full structural relaxation requires mo-
lecular exchange between these two structurally distinct solva-
tion subshells. This involves center-of-mass translation of water
molecules and proceeds roughly two times slower than the
H-bond exchange that occurs within a given subshell. This
persistent structural heterogeneity clearly distinguishes aqueous
ionic solutions from pure water and could influence fast
dynamical events in aqueous ionic solutions, such as photo-
chemical transformations.
(37) Hartwigsen, C.; Goedecker, S.; Hutter, J. Phys. ReV. B. 1998, 58,
Acknowledgment. S.P. and K.J.G. thank the U.S. Department
of Energy and the W. M. Keck Foundation for financial support,
M. D. Fayer for the illuminating discussion of 2DIR spectros-
copy and water dynamics, K. Kwak for initial 2DIR calculation
source code, and J. Sung for experimental assistance. M.O.
thanks the Swedish Research Council (VR) for support and
gratefully acknowledges generous grants of computer time at
the Swedish National Supercomputer Center (NSC) and Center
for Parallel Computing (PDC).
3641–3662.
(38) Nos′e, S. J. Chem. Phys. 1984, 81, 511.
(39) Nos′e, S. Mol. Phys. 1984, 52, 255.
(40) Hoover, W. G. Phys. ReV. A. 1985, 31, 1695.
(41) Kuo, I.-F. W.; Mundy, C. J.; McGrath, M. J.; Siepmann, J. I.;
VandeVondele, J.; Sprik, M.; Hutter, J.; Chen, B.; Klein, M. L.; Mohamed,
F.; Krack, M.; Parrinello, M. J. Phys. Chem. B 2004, 108, 12990–12998.
(42) Hetenyi, B.; Angelis, F. D.; Giannozzi, P.; Car, R. J. Chem. Phys.
2004, 120, 8632.
(43) Corcelli, S.; Skinner, J. L. J. Phys. Chem. A 2005, 109, 6154–
6165.
(44) Smith, J. D.; Saykally, R. J.; Geissler, P. L. J. Am. Chem. Soc.
2007, 129, 13847.
References and Notes
(45) Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Chem. Phys. 2001,
266, 137–147.
(1) Ball, P. Nature 2008, 452, 291.
(46) Zheng, J.; Kwak, K.; Asbury, J. B.; Chen, X.; Piletic, I.; Fayer,
M. D. Science 2005, 309, 1338–1343.
(47) Kim, Y. S.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U.S.A. 2005,
102, 11185–11190.
(48) Cahoon, J. F.; Sawyer, K. R.; Schlegel, J. P.; Harris, C. B. Science
2008, 319, 1820–1823.
(49) Steinel, T.; Asbury, J. B.; Zheng, J. R.; Fayer, M. D. J. Phys. Chem.
A 2004, 108, 10957–10964.
(50) Dokter, A. M.; Woutersen, S.; Bakker, H. J. Phys. ReV. Lett. 2005,
94, 178301.
(51) Piletic, I.; Moilanen, D. E.; Spry, D. B.; Levinger, N. E.; Fayer,
M. D. J. Phys. Chem. A 2006, 110, 4985–4999.
(52) Kropman, M. F.; Bakker, H. J. J. Am. Chem. Soc. 2004, 126, 9135–
9141.
(53) Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford
University Press: New York, 1995.
(54) Kwak, K.; Zheng, J.; Cang, H.; Fayer, M. D. J. Phys. Chem. B.
2006, 110, 19998–20013.
(55) Kwac, K.; Cho, M. J. Chem. Phys. 2004, 120, 1477–1490.
(56) Schmidt, J. R.; Corcelli, S. A.; Skinner, J. L. J. Chem. Phys. 2005,
123 (13), 044513.
(57) Loparo, J. J.; Roberts, S. T.; Nicodemus, R. A.; Tokmakoff, A.
Chem. Phys. 2007, 341, 218–229.
(58) Fecko, C. J.; Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem.
Phys. 2005, 122 (18), 054506.
(59) Kwak, K.; Park, S.; Finkelstein, I. J.; Fayer, M. D. J. Chem. Phys.
2007, 127, 1245031.
(60) Gordon, R. G. J. Chem. Phys. 1965, 43, 1307.
(61) Oxtoby, D. W. Annu. ReV. Phys. Chem. 1981, 32, 77.
(62) Silvestrelli, P. L.; Bernasconi, M.; Parrinello, M. Chem. Phys. Lett.
1997, 277, 478–482.
(63) Woods, K. N.; Wiedemann, H. Chem. Phys. Lett. 2004, 393, 159–
165.
(64) Chandler, D. Introduction to Modern Statistical Mechanics; Oxford
University Press, Inc: New York, 1987.
(65) Joo, T.; Jia, Y.; Yu, J. Y.; Lang, M. J.; Fleming, G. R. J. Chem.
Phys. 1996, 104, 6089.
(2) Ball, P. Chem. ReV. 2008, 108, 74–108.
(3) Omta, A. W.; Kropman, M. F.; Woutersen, S.; Bakker, H. J. Science
2003, 301, 347–349.
(4) Krekeler, C.; Site, L. D. J. Phys.: Condens. Matter 2007, 19,
192101.
(5) Mancinelli, R.; Botti, A.; Bruni, F.; Ricci, M. A.; Soper, A. K.
Phys. Chem. Chem. Phys. 2007, 9, 2959–2967.
(6) Graener, H.; Ye, T. Q.; Laubereau, A. J. Chem. Phys. 1989, 90,
3413–16.
(7) Laenen, R.; Rausch, C.; Laubereau, A. Phys. ReV. Lett. 1998, 80,
2622–2625.
(8) Bratos, S.; Gale, G. M.; Gallot, G.; Hache, F.; Lascoux, N.;
Leicknam, J. C. Phys. ReV. E 2000, 61, 5211.
(9) Kropman, M. F.; Bakker, H. J. Science 2001, 291, 2118–2120.
(10) Fecko, C. J.; Eaves, J. D.; Loparo, J. J.; Tokmakoff, A.; Geissler,
P. L. Science 2003, 301, 1698–1702.
(11) Asbury, J. B.; Steinel, T.; Stromberg, C.; Corcelli, S. A.; Lawrence,
C. P.; Skinner, J. L.; Fayer, M. D. J. Phys. Chem. A 2004, 108, 1107–
1119.
(12) Eaves, J. D.; Loparo, J. J.; Fecko, C. J.; Roberts, S. T.; Tokmakoff,
A.; Geissler, P. L. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 13019–13022.
(13) Cowan, M. L.; Bruner, B. D.; Huse, N.; Dwyer, J. R.; Chugh, B.;
Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D. Nature 2005, 434, 199.
(14) Park, S.; Fayer, M. D. Proc. Nat. Acad. Sci. U.S.A. 2007, 104,
16731–16738.
(15) Rey, R.; Moller, K. B.; Hynes, J. T. J. Phys. Chem. A 2002, 106,
11993–11996.
(16) Lawrence, C. P.; Skinner, J. L. J. Chem. Phys. 2003, 118, 264–
272.
(17) Laage, D.; Hynes, J. T. Science 2006, 311, 832–835.
(18) Laage, D.; Hynes, J. T. Proc. Nat. Acad. Sci. U.S.A. 2007, 104,
11167–11172.
(19) Laage, D.; Hynes, J. T. J. Phys. Chem. B 2008, 112, 7697–7701.
(20) Moilanen, D. E.; Wong, D.; Rosenfeld, D. E.; Fenn, E. E.; Fayer,
M. D. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 375–380.
(21) Park, S.; Kwak, K.; Fayer, M. D. Laser Phys. Lett. 2007, 4, 704–
718.
(22) Zheng, J.; Kwak, K.; Fayer, M. D. Acc. Chem. Res. 2007, 40, 75–
83.
(23) Park, S.; Moilanen, D. E.; Fayer, M. D. J. Phys. Chem. B. 2008,
102, 5279–5290.
(24) Khalil, M.; Demirdoven, N.; Tokmakoff, A. Phys. ReV. Lett. 2003,
90 (4), 04740.
(66) Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2006,
125, 194521.
(67) Flu¨kiger, P.; Lu¨thi, H. P.; Portmann, S.; Weber, J. MOLEKEL 4.0;
Swiss National Supercomputing Centre CSCS: Manno, Switzerland, 2000.
JP9016739