5
112
M. E. Moragues et al. / Tetrahedron Letters 53 (2012) 5110–5113
1
1
0
0
0
0
0
0
0
0
0
0
.1
.0
.9
.8
.7
.6
.5
.4
.3
.2
.1
.0
In summary, we have synthesized a new tripodal chemosensor
1
0
.0
.8
containing thiourea binding sites and fluorescein as signalling re-
porter for the colorimetric detection of basic anions in DMSO and
mixed water–DMSO solutions. The colorimetric response observed
is due to the opening of the lactone ring of fluorescein induced by
the deprotonation of the hydroxyl moieties.
0.6
0.4
0.2
0
.0
0
2
4
6
8
10
-
Equiv BzO
Acknowledgments
Financial support from the Spanish Government (project
MAT2009-14564-C04-01) and the Generalitat Valenciana (project
PROMETEO/2009/016) is gratefully acknowledged. M.E.M. thanks
the Ministerio de Educación for a Doctoral FPU Fellowship.
-
0.1
3
00
400
500
Wavelength (nm)
600
References and notes
ꢁ
5
ꢁ3
Figure 4. UV–visible spectral changes of 3 (5.0 ꢀ 10 mol dm ) in DMSO upon
ꢁ
1. (a) Schmdtchen, F. P.; Berger, M. Chem. Rev. 1997, 97, 1609–1646; (b) Beer, P.
D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–516; (c) Wenzel, M.; Hiscock,
J. R.; Gale, P. A. Chem. Soc. Rev. 2012, 41(1), 480–520; (d) Suksai, C.; Tuntulani, T.
Chem. Soc. Rev. 2003, 32, 192–202; (e) Gunnlaugsson, T.; Glynn, M.; Tocci, G.
M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem. Rev. 2006, 250, 3094–3117.
addition of BzO (0.2–10 equiv) anion. The inset shows the nonlinear curve fitting
of the absorbance at 520 nm against the added BzO .
ꢁ
2.
(a) Moragues, M. E.; Martínez-Máñez, R.; Sancenón, F. Chem. Soc. Rev. 2011, 40,
2
4
3
593–2643; (b) Martínez-Máñez, R.; Sancenón, F. Chem. Rev. 2003, 103, 4419–
476; (c) Martínez-Máñez, R.; Sancenón, F. Coord. Chem. Rev. 2006, 250, 3081–
093; (d) Wiskur, S. L.; Aït-Haddou, H.; Lavigne, J. J.; Anslyn, E. V. Acc. Chem. Res.
genic response of receptor 3 is clearly related with the basicity of
the tested anions and it was clear from the results that an increase
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
in the basicity of the anion (CN ꢂ F > AcO > BzO > H
2
PO4 was
2001, 34, 963–972; (e) Amendola, V.; Esteban-Gómez, D.; Fabbrizzi, L.; Lichelli,
M. Acc. Chem. Res. 2006, 39, 343–348.
directly reflected in a larger enhancement of the intensity of the
visible bands and also in an enhancement of the fluorescence. In
fact the same colour modulation and fluorescence enhancement
were observed upon titration of 3 in DMSO with tetrabutylammo-
nium hydroxide.
3
.
.
(a) Kang, J.; Jo, J. H.; In, S. Tetrahedron Lett. 2004, 45, 5225–5228; (b)
Chmielewski, M.; Jurczak, J. Tetrahedron Lett. 2004, 45, 6007–6010; (c)
Chmielewski, M.; Jurczak, J. Tetrahedron Lett. 2005, 46, 3085–3088; (d) Choi,
K.; Hamilton, A. D. Coord. Chem. Rev. 2003, 240, 101–110; (e) Evans, L. S.; Gale,
P. A. Chem. Commun. 2004, 1286–1287.
(a) Cho, E. J.; Ryu, B. J.; Lee, Y. J.; Nam, K. C. Org. Lett. 2005, 7, 2607–2609; (b)
Burns, D. H.; Calderon-Kawasaki, K.; Kularatne, S. J. Org. Chem. 2005, 70, 2803–
2807; (c) Bao, X. P.; Zhang, H.; Zhang, Z.; Wu, L.; Li, Z. Y. Inorg. Chem. Commun.
4
The best fitting of the titration data using the program HypSpec
was obtained when two consecutive processes were considered;
that is, the formation of 1:1 hydrogen-bonding complexes between
2
007, 10, 728–729; (d) Esteban-Gómez, D.; Fabbrizzi, L.; Licchelli, M.; Monzani,
E. Org. Biomol. Chem. 2005, 3, 1495–1500; (e) Loeb, S. J. J. Am. Chem. Soc. 2004,
26, 5030–5031.
5. (a) Kato, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. Tetrahedron Lett. 2001, 42,
053–5056; (b) Kondo, S. I.; Nagamine, M.; Yano, Y. Tetrahedron Lett. 2003, 44,
3
and the corresponding anion Eq. 1 and a deprotonation reaction
1
upon addition of excess of anion Eq. 2:
5
ꢁ
ꢁ
3
3
3
þ A ¡3 ꢁ A
ð1Þ
ð2Þ
ð3Þ
8801–8804; (c) Bao, X. P.; Wang, L.; Wu, L.; Li, Z. Y. Supramol. Chem. 2008, 20,
467–478; (d) Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.; Glynn, M. Org. Biomol.
Chem. 2005, 3, 48–56; (e) Jun, E. J.; Swamy, K. M. K.; Bang, H.; Kim, S.-J.; Yoon, J.
Tetrahedron Lett. 2006, 47, 3103–3106.
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ A þ A ¡3 þ HA
2
ꢁ
ꢁ
ꢁ
þ 2A ¡3 þ HA2
6.
(a) Starnes, S. D.; Arungundram, S.; Saunders, C. H. Tetrahedron Lett. 2002, 43,
7
785–7788; (b) Chung, Y. M.; Raman, B.; Kim, D. S.; Ahn, K. H. Chem. Commun.
From the titration profiles the stability constants for the inter-
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
2006, 186–188.
action of 3 with the anions F , CN , AcO , BzO , H
OH were calculated (see Table 1).
2
PO4 and
7.
(a) Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem.
Soc. 1999, 121, 10438–10439; (b) Sessler, J. L.; Maeda, H.; Mizuno, T.; Lynch, V.
M.; Furuta, H. Chem. Commun. 2002, 862–863; (c) Sessler, J. L.; Pantos, G. D.;
Katayev, E.; Lynch, V. M. Org. Lett. 2003, 5, 4141–4144; (d) Gale, P. A.; Light, M.
E.; McNally, B.; Navakhun, K.; Sliwinski, K. E.; Smith, B. D. Chem. Commun. 2005,
ꢁ
Values of stability constants for the overall process in Eq. 3 fol-
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
lowed the order CN > Ac > F > OH > BzO . Moreover it was
found that the logarithms of the stability constants for the coordi-
nation process Eq. 1 were small (that is, ꢁ9.32, ꢁ3.21, ꢁ3.32, ꢁ0.27
3
773–3775.
8. (a) Chang, K. J.; Moon, D.; Lah, M. S.; Jeong, K. S. Angew. Chem., Int. Ed. 2005, 44,
7926–7929; (b) Kim, N. K.; Chang, K. J.; Moon, D.; Lah, M. S.; Jeong, K. S. Chem.
Commun. 2007, 3401–3403; (c) Yu, J. O.; Browning, C. S.; Farrar, D. H. Chem.
Commun. 2008, 1020–1022.
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
and ꢁ2.34 for OH , CN , F , AcO and BzO , respectively). The low
ꢁ
value found for coordination with OH (and its large value ob-
served for deprotonation that is, 12.73) clearly indicated a favour-
able proton transfer reaction between 3 and OH anion whereas
9. (a) Metzger, A.; Anslyn, E. V. Angew. Chem. Int. Ed. 1998, 37, 649–652; (b)
Wiskur, S. L.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123, 10109–10110; (c) Aït-
Haddou, H.; Wiskur, S. L.; Lynch, V. M.; Anslyn, E. V. J. Am. Chem. Soc. 2001, 123,
ꢁ
the other anions formed 1:1 hydrogen-bonding complexes (most
likely with the thiourea binding sites) at low anion concentrations.
Upon addition of increasing quantities of anions a deprotonation
reaction occurs. The enhancement of the absorption and the fluo-
rescence observed in the presence of basic anions suggested that
the sensing mechanism would most likely involve the opening of
the lactone ring in the fluorescein chromophore.
11296–11297.
10. For recent works on anion chemosensors see for example: (a) Climent, E.;
Giménez, C.; Marcos, M. D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J. Chem.
Commun. 2011, 47, 6873–6875; (b) Calero, P.; Hecht, M.; Martínez-Máñez, R.;
Sancenón, F.; Soto, J.; Vivancos, J. L.; Rurack, K. Chem. Commun. 2011, 47,
10599–10601; (c) Ábalos, T.; Jiménez, D.; Moragues, M.; Royo, S.; Martínez-
Máñez, R.; Sancenón, F.; Soto, J.; Costero, A. M.; Parra, M.; Gil, S. Dalton Trans.
2010, 39, 3449–3459; (d) Climent, E.; Calero, P.; Marcos, M. D.; Martínez-
Máñez, R.; Sancenón, F.; Soto, J. Chem. Eur. J. 2009, 15, 1816–1820; (e) Ábalos,
T.; Royo, S.; Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Costero, A. M.; Gil, S.;
Parra, M. New J. Chem. 2009, 33, 1641–1645; (f) Comes, M.; Marcos, M. D.;
Martínez-Máñez, R.; Sancenón, F.; Soto, J.; Villaescusa, L. A.; Amorós, P. Chem.
Commun. 2008, 3639–3641.
Additional studies were also carried out with DMSO–water
ꢁ
5
ꢁ3
9
0:10 v/v solutions (pH 7.0) of receptor 3 (5.0 ꢀ 10 mol dm
)
in order to test the possible application for anion sensing in an
aqueous medium. Addition of CN , F , H PO4 , AcO and BzO an-
2
ꢁ
ꢁ
ꢁ
ꢁ
ꢁ
11.
Vacca, A.; Nativi, C.; Cacciarini, M.; Pergoli, R.; Roelens, S. J. Am. Chem. Soc.
2004, 126, 16456–16464.
ions to DMSO–water solutions of 3 resulted in same changes on the
UV–visible spectrum than the observed when using DMSO alone.
The only difference was related with the fact that more equivalents
of the anions were necessary to obtain the same change in the
absorbance. This is a clear consequence of the partial solvation of
the anion in the presence of water that reduced their basicity.
12. Synthesis of compound 2: In a first step, to a mixture of paraformaldehyde
(
(
16.7 g, 556.3 mmol) and triethylbenzene (1, 10 mL, 53.1 mmol) in HBr/AcOH
100 mL, 30 wt %) zinc bromide (19.7 g, 87.5 mmol) was slowly added at room
temperature. The mixture was heated to 90 °C for 16.5 h, during which time
white crystals were formed. The reaction was cooled to room temperature, and
the white solid was filtered off, washed with water, and dried under vacuum